Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The messy death of a multiple star system and the resulting planetary nebula as observed by JWST

An Author Correction to this article was published on 03 January 2023

This article has been updated

Abstract

Planetary nebulae—the ejected envelopes of red giant stars—provide us with a history of the last, mass-losing phases of 90% of stars initially more massive than the Sun. Here we analyse images of the planetary nebula NGC 3132 from the James Webb Space Telescope (JWST) Early Release Observations. A structured, extended hydrogen halo surrounding an ionized central bubble is imprinted with spiral structures, probably shaped by a low-mass companion orbiting the central star at about 40–60 au. The images also reveal a mid-infrared excess at the central star, interpreted as a dusty disk, which is indicative of an interaction with another closer companion. Including the previously known A-type visual companion, the progenitor of the NGC 3132 planetary nebula must have been at least a stellar quartet. The JWST images allow us to generate a model of the illumination, ionization and hydrodynamics of the molecular halo, demonstrating the power of JWST to investigate complex stellar outflows. Furthermore, new measurements of the A-type visual companion allow us to derive the value for the mass of the progenitor of a central star with excellent precision: 2.86 ± 0.06 M. These results serve as pathfinders for future JWST observations of planetary nebulae, providing unique insight into fundamental astrophysical processes including colliding winds and binary star interactions, with implications for supernovae and gravitational-wave systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: JWST images of the PN NGC 3132.
Fig. 2: The dusty central star of the PN NGC 3132.
Fig. 3: Morpho-kinematic reconstruction of the ionized cavity of PN NGC 3132.
Fig. 4: The physical interpretation of the flocculent H2 structure.
Fig. 5: Approximate illumination model of the H2 halo of PN NGC 3132.

Similar content being viewed by others

Data availability

HST data are available at HST Legacy Archive (https://hla.stsci.edu). JWST data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute (https://archive.stsci.edu/). MUSE data were collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 60.A-9100), presented in ref. 74, and are available at the ESO Archive (http://archive.eso.org). San Pedro de Martir data are available at http://kincatpn.astrosen.unam.mx.

Code availability

The code MOCASSIN is available at https://mocassin.nebulousresearch.org/. ZEUS3-D is available at the Laboratory for Computational Astrophysics84). The compiled version of Shape is available at http://www.astrosen.unam.mx/shape.

Change history

References

  1. Mastrodemos, N. & Morris, M. Bipolar pre-planetary nebulae: hydrodynamics of dusty winds in binary systems. II. Morphology of the circumstellar envelopes. Astrophys. J. 523, 357–380 (1999).

    Article  ADS  Google Scholar 

  2. Mohamed, S. & Podsiadlowski, P. Mass transfer in mira-type binaries. Baltic Astron. 21, 88–96 (2012).

    ADS  Google Scholar 

  3. Maercker, M. et al. Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris. Nature 490, 232–234 (2012).

    Article  ADS  Google Scholar 

  4. Santander-García, M. et al. ALMA high spatial resolution observations of the dense molecular region of NGC 6302. Astron. Astrophys. 597, A27 (2017).

    Article  Google Scholar 

  5. Sahai, R. & Trauger, J. T. Multipolar bubbles and jets in low-excitation planetary nebulae: toward a new understanding of the formation and shaping of planetary nebulae. Astron. J. 116, 1357–1366 (1998).

    Article  ADS  Google Scholar 

  6. Sahai, R., Morris, M. R. & Villar, G. G. Young planetary nebulae: Hubble Space Telescope imaging and a new morphological classification system. Astron. J. 141, 134 (2011).

    Article  ADS  Google Scholar 

  7. van Winckel, H. Post-AGB stars. Annu. Rev. Astron. Astrophys. 41, 391–427 (2003).

    Article  ADS  Google Scholar 

  8. Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

    Article  ADS  Google Scholar 

  9. Mastrodemos, N. & Morris, M. Bipolar preplanetary nebulae: hydrodynamics of dusty winds in binary systems. I. Formation of accretion disks. Astrophys. J. 497, 303 (1998).

    Article  ADS  Google Scholar 

  10. Mohamed, S. & Podsiadlowski, P. R. Wind Roche-lobe overflow: a new mass-transfer mode for wide binaries. In 15th European Workshop on White Dwarfs: Astronomical Society of the Pacific Conference Series Vol. 372 (eds. Napiwotzki, R. & Burleigh, M. R.) 397–400 (ASP, 2007).

  11. de Val-Borro, M., Karovska, M. & Sasselov, D. Numerical simulations of wind accretion in symbiotic binaries. Astrophys. J. 700, 1148–1160 (2009).

    Article  ADS  Google Scholar 

  12. Soker, N. Visual wide binaries and the structure of planetary nebulae. Astron. J. 118, 2424–2429 (1999).

    Article  ADS  Google Scholar 

  13. Balick, B. et al. FLIERs and other microstructures in planetary nebulae. IV. Images of elliptical PNs from the Hubble Space Telescope. Astron. J. 116, 360–371 (1998).

    Article  ADS  Google Scholar 

  14. Sahai, R. & Trauger, J. T. Multipolar bubbles and jets in low-excitation planetary nebulae: toward a new understanding of the formation and shaping of planetary nebulae. Astron. J. 116, 1357–1366 (1998).

    Article  ADS  Google Scholar 

  15. Sabbadin, F., Turatto, M., Ragazzoni, R., Cappellaro, E. & Benetti, S. The structure of planetary nebulae: theory vs. practice. Astron. Astrophys. 451, 937–949 (2006).

    Article  ADS  Google Scholar 

  16. Steffen, W. & López, J. A. Morpho-kinematic modeling of gaseous nebulae with SHAPE. Rev. Mexicana Astron. Astrofis. 42, 99–105 (2006).

    ADS  Google Scholar 

  17. Balick, B. & Frank, A. Shapes and shaping of planetary nebulae. Annu. Rev. Astron. Astrophys. 40, 439–486 (2002).

    Article  ADS  Google Scholar 

  18. De Marco, O. The origin and shaping of planetary nebulae: putting the binary hypothesis to the test. Publ. Astron. Soc. Pac. 121, 316 (2009).

    Article  ADS  Google Scholar 

  19. Jones, D. & Boffin, H. M. J. Binary stars as the key to understanding planetary nebulae. Nat. Astron. 1, 0117 (2017).

    Article  ADS  Google Scholar 

  20. Sahai, R., Wootten, A. & Clegg, R. E. S. CO in the bipolar planetary nebula NGC 3132. Astron. Astrophys. 234, L1–L4 (1990).

    ADS  Google Scholar 

  21. Kastner, J. H., Weintraub, D. A., Gatley, I., Merrill, K. M. & Probst, R. G. H2 emission from planetary nebulae: signpost of bipolar structure. Astrophys. J. 462, 777 (1996).

    Article  ADS  Google Scholar 

  22. Abramovici, A. et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory. Science 256, 325–333 (1992).

    Article  ADS  Google Scholar 

  23. Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  24. Ivezic, Z. et al. Large Synoptic Survey Telescope: from science drivers to reference design. Serbian Astron. J. 176, 1–13 (2008).

    Article  ADS  Google Scholar 

  25. Santander-García, M. et al. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428. Nature 519, 63–65 (2015).

    Article  ADS  Google Scholar 

  26. Chiotellis, A., Boumis, P. & Spetsieri, Z. T. The interaction of type Ia supernovae with planetary nebulae: the case of Kepler’s supernova remnant. Galaxies 8, 38 (2020).

    Article  ADS  Google Scholar 

  27. Cikota, A., Patat, F., Cikota, S., Spyromilio, J. & Rau, G. Common continuum polarization properties: a possible link between proto-planetary nebulae and type Ia supernova progenitors. Mon. Not. R. Astron. Soc. 471, 2111–2116 (2017).

    Article  ADS  Google Scholar 

  28. Hora, J. L. et al. Infrared Array Camera (IRAC) observations of planetary nebulae. Astrophys. J. Suppl. Ser. 154, 296–301 (2004).

    Article  ADS  Google Scholar 

  29. Fang, X. et al. Extended structures of planetary nebulae detected in H2 emission. Astrophys. J. 859, 92 (2018).

    Article  ADS  Google Scholar 

  30. Ramos-Larios, G. et al. Rings and arcs around evolved stars—I. Fingerprints of the last gasps in the formation process of planetary nebulae. Mon. Not. R. Astron. Soc. 462, 610–635 (2016).

    Article  ADS  Google Scholar 

  31. Guerrero, M. A., Ramos-Larios, G., Toalá, J. A., Balick, B. & Sabin, L. Rings and arcs around evolved stars—II. The carbon star AFGL 3068 and the planetary nebulae NGC 6543, NGC 7009, and NGC 7027. Mon. Not. R. Astron. Soc. 495, 2234–2246 (2020).

    Article  ADS  Google Scholar 

  32. Kim, H., Liu, S.-Y. & Taam, R. E. Templates of binary-induced spiral-shell patterns around mass-losing post-main-sequence stars. Astrophys. J. Suppl. Ser. 243, 35 (2019).

    Article  ADS  Google Scholar 

  33. Maes, S. et al. SPH modelling of companion-perturbed AGB outflows including a new morphology classification scheme. Astron. Astrophys. 653, A25 (2021).

    Article  Google Scholar 

  34. Aydi, E. & Mohamed, S. 3D models of the circumstellar environments of evolved stars: formation of multiple spiral structures. Mon. Not. R. Astron. Soc. 513, 4405–4430 (2022).

    Article  ADS  Google Scholar 

  35. Decin, L. et al. (Sub)stellar companions shape the winds of evolved stars. Science 369, 1497–1500 (2020).

    Article  ADS  Google Scholar 

  36. Méndez, R. H. A-type central stars of planetary nebulae—II. The central stars of NGC 2346, He 2-36 and NGC 3132. Mon. Not. R. Astron. Soc. 185, 647–660 (1978).

    Article  ADS  Google Scholar 

  37. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  38. Su, K. Y. L. et al. A debris disk around the central star of the helix nebula? Astrophys. J. Lett. 657, L41–L45 (2007).

    Article  ADS  Google Scholar 

  39. Clayton, G. C. et al. Dusty disks around central stars of planetary nebulae. Astron. J. 147, 142 (2014).

    Article  ADS  Google Scholar 

  40. Ventura, P., Karakas, A., Dell’Agli, F., García-Hernández, D. A. & Guzman-Ramirez, L. Gas and dust from solar metallicity AGB stars. Mon. Not. R. Astron. Soc. 475, 2282–2305 (2018).

    ADS  Google Scholar 

  41. Huang, S.-S. Modes of mass ejection by binary stars and the effect on their orbital periods. Astrophys. J. 138, 471 (1963).

    Article  ADS  Google Scholar 

  42. Soberman, G. E., Phinney, E. S. & van den Heuvel, E. P. J. Stability criteria for mass transfer in binary stellar evolution. Astron. Astrophys. 327, 620–635 (1997).

    ADS  Google Scholar 

  43. van Winckel, H. et al. Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators. Astron. Astrophys. 505, 1221–1232 (2009).

    Article  ADS  Google Scholar 

  44. Sahai, R. The starfish twins: two young planetary nebulae with extreme multipolar morphology. Astrophys. J. Lett. 537, L43–L47 (2000).

    Article  ADS  Google Scholar 

  45. Akashi, M. & Soker, N. Shaping "ears” in planetary nebulae by early jets. Astrophys. J. 913, 91 (2021).

    Article  ADS  Google Scholar 

  46. Bear, E. & Soker, N. Planetary nebulae that cannot be explained by binary systems. Astrophys. J. Lett. 837, L10 (2017).

    Article  ADS  Google Scholar 

  47. Hamers, A. S., Glanz, H. & Neunteufel, P. A statistical view of the stable and unstable roche lobe overflow of a tertiary star onto the inner binary in triple systems. Astrophys. J. Suppl. Ser. 259, 25 (2022).

    Article  ADS  Google Scholar 

  48. Glanz, H. & Perets, H. B. Simulations of common envelope evolution in triple systems: circumstellar case. Mon. Not. R. Astron. Soc. 500, 1921–1932 (2021).

    Article  ADS  Google Scholar 

  49. Höfner, S. & Olofsson, H. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron. Astrophys. Rev. 26, 1 (2018).

    Article  ADS  Google Scholar 

  50. Balick, B. et al. The illumination and growth of CRL 2688: an analysis of new and archival Hubble Space Telescope observations. Astrophys. J. 745, 188 (2012).

    Article  ADS  Google Scholar 

  51. Feigelson, E. D., Lawson, W. A. & Garmire, G. P. The ϵ Chamaeleontis young stellar group and the characterization of sparse stellar clusters. Astrophys. J. 599, 1207–1222 (2003).

    Article  ADS  Google Scholar 

  52. Duchêne, G. & Kraus, A. Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51, 269–310 (2013).

    Article  ADS  Google Scholar 

  53. Monreal-Ibero, A. & Walsh, J. R. The MUSE view of the planetary nebula NGC 3132. Astron. Astrophys. 634, A47 (2020).

    Article  ADS  Google Scholar 

  54. Storey, J. W. V. Molecular hydrogen observations of southern planetary nebulae. Mon. Not. R. Astron. Soc. 206, 521–527 (1984).

    Article  ADS  Google Scholar 

  55. Kohoutek, L. & Laustsen, S. Central star of NGC 3132: a visual binary. Astron. Astrophys. 61, 761–763 (1977).

    ADS  Google Scholar 

  56. Ciardullo, R., Jacoby, G. H., Ford, H. C. & Neill, J. D. Planetary nebulae as standard candles. II—The calibration in M31 and its companions. Astrophys. J. 339, 53–69 (1989).

    Article  ADS  Google Scholar 

  57. Meatheringham, S. J., Wood, P. R. & Faulkner, D. J. A study of some southern planetary nebulae. Astrophys. J. 334, 862–874 (1988).

    Article  ADS  Google Scholar 

  58. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M. & Andrae, R. Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. Astron. J. 161, 147 (2021).

    Article  ADS  Google Scholar 

  59. O’Dell, C. R., McCullough, P. R. & Meixner, M. Unraveling the Helix nebula: its structure and knots. Astron. J. 128, 2339–2356 (2004).

    Article  ADS  Google Scholar 

  60. Meixner, M., McCullough, P., Hartman, J., Son, M. & Speck, A. The multitude of molecular hydrogen knots in the Helix nebula. Astron. J. 130, 1784–1794 (2005).

    Article  ADS  Google Scholar 

  61. Matsuura, M. et al. VLT/near-infrared integral field spectrometer observations of molecular hydrogen lines in the knots of the planetary nebula NGC 7293 (the Helix nebula). Mon. Not. R. Astron. Soc. 382, 1447–1459 (2007).

    Article  ADS  Google Scholar 

  62. Matsuura, M. et al. A "firework” of H2 knots in the planetary nebula NGC 7293 (the Helix nebula). Astrophys. J. 700, 1067–1077 (2009).

    Article  ADS  Google Scholar 

  63. Kastner, J. H., Gatley, I., Merrill, K. M., Probst, R. & Weintraub, D. The bipolar symmetry of ring-like planetary nebulae: molecular hydrogen emission from halos. Astrophys. J. 421, 600 (1994).

    Article  ADS  Google Scholar 

  64. Manchado, A. et al. High-resolution imaging of NGC 2346 with GSAOI/GeMS: disentangling the planetary nebula molecular structure to understand its origin and evolution. Astrophys. J. 808, 115 (2015).

    Article  ADS  Google Scholar 

  65. Fang, X. et al. Extended structures of planetary nebulae detected in H2 emission. Astrophys. J. 859, 92 (2018).

    Article  ADS  Google Scholar 

  66. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  67. Bohlin, R. C., Savage, B. D. & Drake, J. F. A survey of interstellar H i from L-alpha absorption measurements. II. Astrophys. J. 224, 132 (1978).

    Article  ADS  Google Scholar 

  68. Andriantsaralaza, M., Zijlstra, A. & Avison, A. CO in the C1 globule of the Helix nebula with ALMA. Mon. Not. R. Astron. Soc. 491, 758–772 (2020).

    Article  ADS  Google Scholar 

  69. Bourlot, J. L., Forêts, G. P. D. & Flower, D. R. The cooling of astrophysical media by H2. Mon. Not. R. Astron. Soc. 305, 802–810 (1999).

    Article  ADS  Google Scholar 

  70. Wolniewicz, L., Simbotin, I. & Dalgarno, A. Quadrupole transition probabilities for the excited rovibrational states of H2. Astrophys. J. Suppl. Ser. 115, 293–313 (1998).

    Article  ADS  Google Scholar 

  71. Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017).

    Article  ADS  Google Scholar 

  72. Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008).

    Article  ADS  Google Scholar 

  73. Ercolano, B., Barlow, M. J., Storey, P. J. & Liu, X. W. Mocassin: a fully three-dimensional Monte Carlo photoionization code. Mon. Not. R. Astron. Soc. 340, 1136–1152 (2003).

    Article  ADS  Google Scholar 

  74. Monreal-Ibero, A. & Walsh, J. R. The MUSE view of the planetary nebula NGC 3132. Astron. Astrophys. 634, A47 (2020).

    Article  ADS  Google Scholar 

  75. Tsamis, Y. G., Barlow, M. J., Liu, X.-W., Storey, P. J. & Danziger, I. J. A deep survey of heavy element lines in planetary nebulae—II. Recombination-line abundances and evidence for cold plasma. Mon. Not. R. Astron. Soc. 353, 953–979 (2004).

    Article  ADS  Google Scholar 

  76. Mata, H. et al. Spitzer mid-infrared spectroscopic observations of planetary nebulae. Mon. Not. R. Astron. Soc. 459, 841–853 (2016).

    Article  ADS  Google Scholar 

  77. Rauch, T. NLTE spectral analysis of the sdOB primary of the eclipsing binary system LB 3459 (AA Dor). Astron. Astrophys. 356, 665–675 (2000).

    ADS  Google Scholar 

  78. Blöcker, T. Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution. Astron. Astrophys. 299, 755 (1995).

    ADS  Google Scholar 

  79. Kamath, D. et al. New Post-AGB star models as tools to understand AGB evolution and nucleosynthesis. Preprint at https://arxiv.org/abs/2112.05535 (2021).

  80. Tosi, S. et al. Understanding dust production and mass loss on the AGB phase using post-AGB stars in the Magellanic Clouds. Preprint at https://arxiv.org/abs/2208.08314 (2022).

  81. Villaver, E., Manchado, A. & García-Segura, G. The dynamical evolution of the circumstellar gas around low- and intermediate-mass stars. II. The planetary nebula formation. Astrophys. J. 581, 1204–1224 (2002).

    Article  ADS  Google Scholar 

  82. García-Segura, G., Taam, R. E. & Ricker, P. M. Common envelope shaping of planetary nebulae. III. The launching of jets in proto-planetary nebulae. Astrophys. J. 914, 111 (2021).

    Article  ADS  Google Scholar 

  83. Bradley, L. et al. astropy/photutils: 1.5.0. Zenodo https://doi.org/10.5281/zenodo.596036 (2022).

  84. Clarke, D. A. A consistent method of characteristics for multidimensional magnetohydrodynamics. Astrophys. J. 457, 291 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the International Astronomical Union that oversees the work of Commission H3 on Planetary Nebulae. It is through the coordinating activity of this committee that this paper came together. S.A. acknowledges support under the grant 5077 financed by IAASARS/NOA. J.A. and V.B. acknowledge support from the EVENTs/Nebulae-Web research programme, Spanish AEI grant PID2019-105203GB-C21. I.A. acknowledges the support of CAPES, Brazil (Finance Code 001). E.D.B. acknowledges financial support from the Swedish National Space Agency. E.G.B. acknowledges NSF grants AST-1813298 and PHY-2020249. J.C. and E.P. acknowledge support from an NSERC Discovery Grant. G.G.-S. thanks M. L. Norman and the Laboratory for Computational Astrophysics for the use of ZEUS-3D. D.A.G.-H. and A.M. acknowledge support from the ACIISI, Gobierno de Canarias and the European Regional Development Fund (ERDF) under grant with reference PROID2020010051 as well as from the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation (MICINN) under grant PID2020-115758GB-I00. J.G.-R. acknowledges support from Spanish AEI under Severo Ochoa Centres of Excellence Programme 2020-2023 (CEX2019-000920-S). J.G.-R. and V.G.-L. acknowledge support from ACIISI and ERDF under grant ProID2021010074. D.R.G. acknowledges the CNPq grant 313016/2020-8. M.A.G. acknowledges support of grant PGC2018-102184-B-I00 of the Ministerio de Educación, Innovación y Universidades cofunded with FEDER funds and from the State Agency for Research of the Spanish MCIU through the ‘Center of Excellence Severo Ochoa’ award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). D.J. acknowledges support from the Erasmus+ programme of the European Union under grant number 2020-1-CZ01-KA203-078200. A.I.K. and Z.O. were supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. This research is/was supported by an Australian Government Research Training Program (RTP) Scholarship. M.M. and R.W. acknowledge support from STFC Consolidated grant (2422911). C.M. acknowledges support from UNAM/DGAPA/PAPIIT under grant IN101220. S.S.M. acknowledges funding from UMiami, the South African National Research Foundation and the University of Cape Town VC2030 Future Leaders Award. J.N. acknowledges support from NSF grant AST-2009713. C.M.d.O. acknowledges funding from FAPESP through projects 2017/50277-0, 2019/11910-4 e 2019/26492-3 and CNPq, process number 309209/2019-6. J.H.K. and P.M.B. acknowledge support from NSF grant AST-2206033 and a NRAO Student Observing Support grant to Rochester Institute of Technology. M.O. was supported by JSPS Grants-in-Aid for Scientific Research(C) (JP19K03914 and 22K03675). Q.A.P. acknowledges support from the HKSAR Research grants council. Vera C. Rubin Observatory is a Federal project jointly funded by the National Science Foundation (NSF) and the Department of Energy (DOE) Office of Science, with early construction funding received from private donations through the LSST Corporation. The NSF-funded LSST (now Rubin Observatory) Project Office for construction was established as an operating centre under the management of the Association of Universities for Research in Astronomy (AURA). The DOE-funded effort to build the Rubin Observatory LSST Camera (LSSTCam) is managed by SLAC National Accelerator Laboratory (SLAC). A.J.R. was supported by the Australian Research Council through award number FT170100243. L.S. acknowledges support from PAPIIT UNAM grant IN110122. C.S.C.’s work is part of I+D+i project PID2019-105203GB-C22 funded by the Spanish MCIN/AEI/10.13039/501100011033. M.S.-G. acknowledges support by the Spanish Ministry of Science and Innovation (MICINN) through projects AxIN (grant AYA2016-78994-P) and EVENTs/Nebulae-Web (grant PID2019-105203GB-C21). R.S.’s contribution to the research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. J.A.T. thanks the Marcos Moshisnky Fundation (Mexico) and UNAM PAPIIT project IA101622. E.V. acknowledges support from the ‘On the rocks II project’ funded by the Spanish Ministerio de Ciencia, Innovación y Universidades under grant PGC2018-101950-B-I00. A.A.Z. acknowledges support from STFC under grant ST/T000414/1. This research made use of Photutils, an Astropy package for detection and photometry of astronomical sources83, of the Spanish Virtual Observatory (https://svo.cab.inta-csic.es) project funded by MCIN/AEI/10.13039/501100011033/ through grant PID2020-112949GB-I00 and of the computing facilities available at the Laboratory of Computational Astrophysics of the Universidade Federal de Itajubá (LAC-UNIFEI, which is maintained with grants from CAPES, CNPq and FAPEMIG). Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESAC/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). The JWST Early Release Observations and associated materials were developed, executed and compiled by the ERO production team: H. Braun, C. Blome, M. Brown, M. Carruthers, D. Coe, J. DePasquale, N. Espinoza, M. Garcia Marin, K.Gordon, A. Henry, L. Hustak, A. James, A. Jenkins, A. Koekemoer, S. LaMassa, D. Law, A. Lockwood, A. Moro-Martin, S. Mullally, A. Pagan, D. Player, K. Pontoppidan, C. Proffitt, C. Pulliam, L. Ramsay, S. Ravindranath, N. Reid, M. Robberto, E. Sabbi, L. Ubeda. The EROs were also made possible by the foundational efforts and support from the JWST instruments, STScI planning and scheduling, and Data Management teams. Finally, this work would not have been possible without the collaborative platforms Slack (slack.com) and Overleaf (overleaf.com).

Author information

Authors and Affiliations

Authors

Contributions

The following authors have contributed majorly to multiple aspects of the work that lead to this paper, the writing and the formatting of figures: O.D. (writing, structure, interpretation and synthesis), I.A. (H2 interpretation), B.B. (processing and interpreting images), G.G.-S. (2D hydro modelling), J.H.K. (writing, H2 measurements and interpretation), M.M. (imaging, photometry and H2 interpretation), B.M. (stellar photometry), S.S.M. (hydrodynamics of binaries), A.M.-I. (MUSE data analysis), H.M. (photoionization and morpho-kinematic models), P.M.B. (JWST image production), C.M. (photoionization modelling), R.S. (disk model and comparative interpretation), N.S. (hydro modelling and interpretation), L. Stanghellini (distances and abundance interpretation), W.S. (morpho-kinematic models), J.R.W. (spatially resolved spectroscopy), A.A.Z. (disk model, H2 measurements, writing and interpretation). The following authors have contributed key expertise to aspects of this paper: M.A. (hydrodynamic modelling and jet interpretation), J.A. (CO observations), S.A. (H2 interpretation), P.A. (space-resolved spectroscopy), E.G.B. (hydrodynamics), J.B. (HST and radio images of fast evolving PN), B. Bucciarelli (Gaia data), V.B. (radio observations, disk observation and interpretation, and comparative studies), Y.-H.C. (disk interpretation), J.C. (molecular formation), R.L.M.C. (final review and interpretation), D.A.G.-H. (IR dust/PAH features and abundances), J.G.-R. (photoionization modelling), V.G.-L. (photoionization modelling), D.R.G. (comparative analysis), M.A.G. (X-ray imaging), D.J. (close binaries), A.I.K. (final review and stellar nucleosynthesis), A.M. (nebular morphology and H2 interpretation), I.M. (photometry modelling), R.M. (X-ray and ultraviolet imaging), Z.O. (binary nucleosynthesis), M.O. (IR imaging), Q.A.P. (morphology), E.P. (nebular spectroscopy and PAHs), A.J.R. (binary populations), L. Sabin (abundances), C.S.C. (radio), M.S.-G. (nebular evolution), I.S. (star and star nebula association), A.K.S. (dust), J.A.T. (morphology), T.U. (nebular imaging), G.V.d.S. (IR observations), P.V. (AGB evolution model). The following authors contributed by commenting on some aspects of the analysis and manuscript: E.D.B., H.M.J.B., P.B., N.C., A.F., S.K., F.L., J.N., C.M.d.O., B.C.Q., G.Q.-L., M.R., E.V., W.V., R.W. and H.V.W.

Corresponding author

Correspondence to Orsola De Marco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Eric Lagadec and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Tables 1 and 2, Figs. 1–8 and References.

Supplementary Video 1

A fly-through video of the morpho-kinematic reconstruction of the ionized cavity of PN NGC 3132 shown in Fig. 3.

Supplementary Video 2

A fly-through video of the illumination model of the H2 halo of PN NGC 3132 shown in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Marco, O., Akashi, M., Akras, S. et al. The messy death of a multiple star system and the resulting planetary nebula as observed by JWST. Nat Astron 6, 1421–1432 (2022). https://doi.org/10.1038/s41550-022-01845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01845-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing