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Abstract

Early life exposure to air pollution poses a significant risk to brain development from direct

exposure to toxicants or via indirect mechanisms involving the circulatory, pulmonary or gas-

trointestinal systems. In children, exposure to traffic related air pollution has been associated

with adverse effects on cognitive, behavioral and psychomotor development. We aimed to

determine whether childhood exposure to traffic related air pollution is associated with regional

differences in brain volume and cortical thickness among children enrolled in a longitudinal

cohort study of traffic related air pollution and child health. We used magnetic resonance imag-

ing to obtain anatomical brain images from a nested subset of 12 year old participants charac-

terized with either high or low levels of traffic related air pollution exposure during their first

year of life. We employed voxel-based morphometry to examine group differences in regional

brain volume, and with separate analyses, changes in cortical thickness. Smaller regional gray

matter volumes were determined in the left pre- and post-central gyri, the cerebellum, and infe-

rior parietal lobe of participants in the high traffic related air pollution exposure group relative to

participants with low exposure. Reduced cortical thickness was observed in participants with

high exposure relative to those with low exposure, primarily in sensorimotor regions of the

brain including the pre- and post-central gyri and the paracentral lobule, but also within the

frontal and limbic regions. These results suggest that significant childhood exposure to traffic

related air pollution is associated with structural alterations in brain.
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Introduction

Accumulating evidence suggests traffic-related air pollution (TRAP) is a contributor to both

neurodegenerative diseases and neurodevelopmental disorders [1–9]. TRAP consists of a com-

plex mixture of gaseous pollutants, fine and ultrafine particulate matter, heavy metals, elemen-

tal and organic carbon, polycyclic aromatic hydrocarbons, and other dynamic constituents

[10]. Diesel exhaust (DE) is a significant contributor to TRAP with a composition incorporat-

ing ultrafine particulate matter (UFPM; <100 nm) and more than 40 toxic pollutants [4, 10].

UFPM can readily access the brain directly through the nasal olfactory mucosa via the olfac-

tory bulb; this direct entry sets up a scenario for adverse structural consequences to occur in

the brain due to the presence of TRAP despite a potentially low translocation rate from deposi-

tion in the nasal cavity [11–13].

Advancements in computational image analysis methods [14–16] reveal typical brain devel-

opment as well as advance discovery of pathophysiological mechanisms associated with aber-

rant development and injury, including those from environmental exposures. Structural

magnetic resonance imaging (MRI) derived cortical thickness assessment estimates the dis-

tance from the pial surface to the gray/white interface surface via automated reconstruction

methods. Cortical thickness measures reflect the size, density and arrangement of neurons,

neuroglia and nerve fibers while also reflecting axon and dendrite remodeling, and myelina-

tion as myelin proliferation into the cortical neutrophil replaces gray matter during develop-

ment [17–21]. The measurement of cortical thickness [17, 22] pairs well with other whole

brain MRI analysis techniques such as voxel based morphometry (VBM) which determines

brain volume based on tissue class via a voxel-wise comparison of anatomical images [17–21].

VBM allows for detection of regional and global differences in volume including decreases or

increases in gray and/or white matter [23–25]. For gray matter, VBM includes cortical surface

area and cortical thickness. These complimentary methods characterize brain structure [25].

By comparing adolescents exposed to high and low concentrations of TRAP during the first

year of life, we ascertained if there was evidence that early life exposure to TRAP was associated

with changes in brain structure, specifically brain volume and cortical thickness. We hypothe-

sized that participants with the highest early life TRAP exposures would demonstrate atypical

neural development with reduced regional brain volumes and cortical thickness at age 12 years

compared to those with lowest TRAP exposures. If early life TRAP exposure irreversibly

harms brain development, as with infection or teratogen exposure, structural consequences

could persist regardless of the time point for a subsequent examination. However, the study

was exploratory as identification of regions with alterations in brain volume and cortical thick-

ness informs potential mechanisms and provides functional significance on how pollutants

exert their effects in the brain.

Materials and methods

Study enrollment

Participants in this study are a subset of the previously described Cincinnati Childhood Allergy

and Air Pollution Study (CCAAPS) cohort [26, 27]. Briefly, CCAAPS is a prospective cohort

study of children recruited prior to age 6 months to examine early childhood exposure to

TRAP and health outcomes including allergic diseases, asthma, and neurodevelopment. Eligi-

bility for study enrollment included participants born at a gestational age greater than 35

weeks, a birth record address either < 400 meters (m) or > 1500 m from a major highway, and

at least one biological parent with an allergic disease. Participating children and their caregiv-

ers completed clinical visits at ages 1, 2, 3, 4, 7, and 12 years (y). Caregivers completed study
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questionnaires at each study visit regarding their child’s health and general wellbeing, housing

characteristics, and residential history. At all study visits children completed allergy testing

and physical examinations, including assessment for growth, anthropometry, and develop-

mental milestones. The clinic visit at age 12 y included direct and indirect assessments of intel-

ligence, reading ability, executive function, mental health, and other neurodevelopmental

outcomes. A nested imaging substudy was conducted on subset of CCAAPS participants at the

age 12 y study visit with eligibility details described below. The Institutional Review Boards at

the University of Cincinnati and the Cincinnati Children’s Hospital Medical Center

(CCHMC) approved the study protocol. Participants provided written assent prior to partici-

pation. Participant’s parents and legal guardians provided informed consent prior to

participation.

Exposure to traffic-related air pollution

Childhood exposure to TRAP was estimated for study participants using a previously devel-

oped and validated land-use regression (LUR) model [28, 29]. Briefly, an ambient air sampling

network consisting of 27 sampling sites was operated from 2001–2006 in the greater Cincin-

nati area, and 24-hour sampling was conducted simultaneously at 4–5 sites over different sea-

sons [29]. Particulate matter less than 2.5 micrometers (PM2.5) samples were collected on

37-mm Teflon membrane filters and 37-mm quartz filters with Harvard-type Impactors.

PM2.5 mass concentrations were determined by gravimetric analysis [30]. Teflon filters were

analyzed by X-ray fluorescence to determine the elemental concentration of 39 elements and

quartz filters were analyzed by thermal-optical transmittance using the NIOSH-5040 method

to determine elemental and organic carbon concentrations. A multivariate receptor model,

UNMIX, was used to identify significant sources contributing to PM2.5 concentrations, includ-

ing traffic. In order to estimate the specific fraction of the sampled elemental carbon arising

from diesel exhaust, we applied elemental source profiles obtained from measurements con-

ducted at cluster sources of diesel-fueled trucks and buses [30]. Thus, the fraction of the sam-

pled elemental carbon due to diesel combustion was derived from each sampling day and is

referred to as the elemental carbon attributable to traffic (ECAT), [30, 31]. Daily ECAT con-

centrations averaged over the entire monitoring period at the sampling sites ranged from

0.22–1.02 μg/m3 and served as the dependent variable in our LUR model development [29].

LUR predictor variables included elevation, nearby truck traffic, and bus routes [29]. The final

LUR model was applied to all residential locations of CCAAPS participants beginning at the

birth record address and through age 12 y as reported by caregivers to derive time-weighted

estimates of ECAT exposure throughout childhood [28, 29].

Nested imaging substudy eligibility

High-resolution anatomical imaging was acquired on a subset of CCAAPS participants who

completed the age 12 y study visit. The intent of the nested imaging substudy was to identify

differential imaging outcomes in children exposed to high levels of TRAP during early child-

hood compared to children exposed to low TRAP levels. Therefore, eligible participants whose

estimated ECAT exposure from birth through age one year were in the highest or lowest quar-

tiles of exposure, or whose birth record address was less than 400 m from a major road were

recruited to participate in the nested imaging substudy. These participants were contacted

about completing the imaging when scheduling the 12 y clinic visit, screened for exclusions or

contraindications to MRI, such as non-removable dental appliances, braces, implanted

devices, or known to be claustrophobic, and enrolled in the nested imaging substudy.
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Participant characteristics

A total of 147 children were enrolled in the nested imaging substudy. Of these, imaging data

was not available for 12 participants due to issues with image reconstruction, artifacts or inci-

dental structural brain abnormalities that interfere with image processing. Demographic and

other characteristics of the 135 participants included in this analysis are presented in Table 1.

Overall, participants in the substudy were 56.3% male, 74.8% Caucasian, and were similar to

participants who completed the age 12 clinic visit and the overall CCAAPS cohort with respect

to demographic characteristics (Table 1). The majority were singleton births (127 (94%)) and

right handed (126 (93%)). Table 2 presents the distribution of participant characteristics by

early childhood TRAP exposure status. As expected from the design, the mean estimated

ECAT exposure at the birth record address was twice as high in the high exposed group com-

pared to the low exposed group (0.56 [0.13] versus 0.27 [0.02] μg/m3, respectively). In addition,

a greater proportion of participants in the substudy with high ECAT exposure were more likely

to be African-american with reported annual household incomes < $20,000 at initial study

enrollment (Table 1).

Image acquisition

The participant MRI examinations were acquired using a 3T Achieva scanner (Philips Medical

Systems, Best, Netherlands) equipped with a 32-channel head coil. High-resolution, three

Table 1. Characteristics of CCAAPS participants at enrollment, age 12 y, and imaging subset [n(%) or mean (SD)].

Characteristic (unit) Enrollment Age 12 y MRI

n = 762 n = 344 n = 135

Child characteristics
Sex

Male 415 (54.5%) 191 (55.5%) 76 (56.3%)

Female 347 (45.5%) 153 (44.5%) 59 (43.7%)

Race / Ethnicity

Caucasian 587 (77.0%) (77.4%) 261 (75.9%) 101 (74.8%)

African American / More than one race 175 (23.0%) (22.6%) 83 (24.1%) 34 (25.2%)

Birth weight (lbs) 7.5 (1.2) 7.6 (1.2) 7.6 (1.2)

Duration of breastfeeding (months) 5.7 (6.5) 6.3 (6.9) 5.6 (6.9)

Maternal characteristics
Age at study enrollment (years) 30.0 (5.7) 30.7 (5.9) 29.7 (5.7)

Maternal education at child age 1

�High school 185 (24.9%) 72 (21.6%) 36 (27.7%)

Some college or trade school 196 (26.4%) 94 (28.1%) 31 (23.9%)

� College degree 361 (48.7%) 168 (50.3%) 63 (48.5%)

Household characteristics
Household income (Parental report at first study visit)�

< $20,000 129 (17.5%) 58 (17.5%) 28 (21.5%)

$20,000 to < $40,000 129 (17.5%) 54 (16.3%) 22 (16.9%)

$40,000 to < $90,000 210 (28.5%) 95 (28.6%) 33 (25.4%)

$90,000 to < $110,000 196 (26.6%) 89 (26.8%) 36 (27.7%)

> $110,000 73 (9.9%) 36 (10.8%) 11 (8.5%)

ECAT at birth record address (μg / m3) 0.39 (0.13) 0.39 (0.14) 0.44 (0.18)

�Missing values (~3%) were not reported by parents

https://doi.org/10.1371/journal.pone.0228092.t001
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dimensional, anatomical imaging data were collected using a single-shot turbo field echo

(TFE) pulse sequence operating with an 8.2 milliseconds (ms) repetition time, a 3.7 ms echo

time, a 1057 ms inversion time, a 8º flip angle, a sensitivity encoding (SENSE) factor of 2

(right-left) and 1 mm3 resolution.

Image processing

Anatomical images were reconstructed using Cincinnati Children’s Image Processing Software

(https://irc.cchmc.org/software/cchips.php) running in IDL 8.1 (Exelis Visual Information

Solutions, Boulder CO). Images were then imported into Statistical Parametric Mapping 12

(SPM12) version 6685 (Wellcome Department of Cognitive Neurology, London) running in

Matlab 7.13.0.564 (The Mathworks, Inc., Natick, MA). All images were first visually scanned for

artifacts and any other abnormalities. Images were then manually reoriented so that the anterior

and posterior commissures were in the same axial slice with the origin voxel [0, 0, 0] set medi-

ally on the anterior commissure. This step ensures that all images are in the same general orien-

tation prior to processing and reduces the number of errors encountered during processing.

Reoriented images were then processed using the Computational Anatomy Toolbox (CAT) ver-

sion r1113 (http://www.neuro.uni-jena.de/cat/) for SPM12 [32]. A more detailed description of

the initial image processing can be found in the methods of Beckwith, Dietrich [33]. Please see

S1 Fig. for a simplified visual of the CAT12 workflow. Briefly, images were skull stripped, reori-

ented to a template in Montreal Neurological Institute (MNI) space using affine registration,

segmented into tissue classes, and processed to minimize noise and partial volume effects [34].

The diffeomorphic anatomical registration through exponentiated line algebra (DARTEL) tool-

box [35] within SPM12 was then used to apply a nonlinear deformation to the images utilizing

an IXI-database template (http://www.brain-development.org). Normalized images were then

bias-corrected and modulated by scaling the Jacobian determinants to account for differences

in the tissue volume that occur during normalization. Normalized gray and white matter tissue

probability maps were smoothed using an 8 mm Gaussian kernel.

The calculation of cortical thickness is included as an optional step in the VBM segmenta-

tion pipeline for the CAT toolbox. A projection based thickness [36] technique estimates the

Table 2. Model variables evaluated in the nested imaging substudy cohort.

Characteristic Cohort (N = 135) Range Low exposure (N = 59) High exposure (N = 76) F or X2 P-value

Race: African American1 34 (~25%) 6 (~10%) 28 (~37%) 12.54 0.0004

Sex1 59 Female (~44%) 29 Female (~49%) 30 Female (~39.5%) 1.26 0.2608

ECAT at birth record address2 0.44 (±0.17) 0.24–0.88 0.27 (±0.02) 0.56 (±0.13) 286.06 < 0.0001

ECAT at imaging2 0.38 (±0.13) 0.24–0.83 0.30 (±0.06) 0.44 (±0.14) 54.20 < 0.0001

Average ECAT2 0.39 (±0.13) 0.24–0.85 0.29 (±0.03) 0.48 (0.11) 163.33 < 0.0001

Child birth weight (pounds)2 7.62 (±1.26) 4.44–10.90 7.86 (±1.31) 7.42 (±1.19) 4.20 0.0423

Child age at imaging (years)2 12.12 (±0.75) 11.0–14.71 12.23 (±0.80) 12.03 (±0.7) 2.43 0.1211

Maternal age (years)2 29.7 (±5.7) 18.34–43.1 31.95 (±5.01) 27.96 (±5.62) 18.44 < 0.0001

Child FSIQ2 99.32 (±15.9) 44–139 101.9 (±15.33) 97.3 (±16.13) 3.91 0.097

Maternal IQ2 105.11 (±13.28) 65–145 109.24 (±12.02) 101.91 (±13.39) 10.87 0.0013

Deprivation index at birth2 0.45 (±0.19) 0.18–1.0 0.36 (±0.1) 0.53 (±0.21) 29.80 < 0.0001

Data presented as mean (± S.D.) or n (%)

F, Χ2, and P-values represent comparison between low and high exposure groups
1 Chi-square test
2 One-way ANOVA

https://doi.org/10.1371/journal.pone.0228092.t002
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white matter distance during the segmentation procedure and projects the local maxima onto

neighboring gray matter voxels using the relationship to that distance. This distance is repre-

sentative of cortical thickness. This technique permits the use of partial volume data, as well as

sulcal asymmetries and blurring without requiring sulcal reconstruction [37]. To account for

topological variations, a technique utilizing spherical harmonics was incorporated [38]. Spher-

ical mapping [39] was used to permit the use of a shared coordinate system, and an adaptation

of the DARTEL algorithm [35] was used for surface registration [40]. Cortical thickness images

were then smoothed to 15 mm as recommended in the CAT12 manual.

Statistical analyses

Demographic characteristics, imputations of missing demographic variables, collinear rela-

tionships and covariate selection for the models were carried out in SAS software (SAS Insti-

tute, Cary, NC). Comparisons between participant characteristics were made using a Chi-

Square test for categorical variables, and a one-way analysis of variance (ANOVA) for all other

variables. Missing data points were generated using a multivariate normal distribution multi-

ple imputation model in SAS. The rate of missing variables was not predicted by any variables

in the imputation analysis and data points were assumed to be missing at random. Ten data

sets were imputed using the PROC MI procedure. Parameter estimates for each imputed data

set were generated via a general linear model and a pooled analysis was conducted to estimate

the standard error for the imputed data set and compared to the initial estimate.

To account for the spatial features within the imaging analyses, we also employed SPM12

running in Matlab for the statistical analyses relating to imaging derived cortical thickness and

VBM. Within SPM12, a full-factorial model allowed for differences in cortical thickness, gray

matter volume, and white matter volume between the two exposure groups. Participants were

grouped by exposure status (low ECAT, high ECAT) and sex. Main effects for exposure status

and sex were initially explored using an omnibus F-test. An F-test was also used to explore the

possibility of an interaction between exposure status and sex. In the event of a statistically sig-

nificant finding, post-hoc T-tests were used to establish the directionality of the effect. Thresh-

old-Free Cluster Enhancement (TFCE) [41, 42] was utilized for cluster-based statistics.

Thresholds for the analyses were set using a Family-Wise Error (FWE) corrected P-value of

0.05 to correct for multiple comparisons.

Covariate selection

Variables considered for inclusion as covariates were: age at time of MRI examination, hand-

edness, gestational age, birth weight, maternal IQ ascertained using the Wechsler Abbreviated

Scale of Intelligence– 2nd Edition, participant full scale IQ obtained using the Wechsler Intelli-

gence Scale for Children–Fourth Edition (WISC-IV), race, sex and a previously calculated

index measure of census tract deprivation index at birth [43]. Variables at the census-tract

level contributing to the deprivation index include the median household income, fraction of

households with income below the poverty level, educational attainment, health insurance cov-

erage, households receiving public assistance and vacant houses. Sex was included as a factor

in the analyses. Age at MRI examination [44], birth weight [45, 46], participant full scale IQ

[47], census tract deprivation status at birth [43], and race [48, 49] were selected for inclusion

in the final model. Total intracranial volume was also included as a covariate for volumetric

analyses. Furthermore, because aspects of socioeconomic status were incorporated into the

census tract deprivation index metric, variables such as income and educational attainment

were not included as separate covariates in the final analyses.
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Data and code availability statement

The data and code used in the study are not available in the public domain. Data usage is cur-

rently governed by the Institutional Review Board at Cincinnati Children’s Hospital Medical

Center. The data contains sensitive information and is confidential. The investigators will

share de-identified data following approved institutional review board (IRB) policies. Investi-

gators may request de-identified data by contacting the corresponding author. The CCHMC

IRB can be reached at irb@cchmc.org, ORCRA@cchmc.org, or by phone at 513.636.8039.

Results

Upon direct comparison, we found decreased cortical thickness in the high ECAT group relative

to the low ECAT group before and after adjusting for covariates. The reduction in cortical thick-

ness for the somatosensory region was approximately 3% upon comparing the average values for

high ECAT group relative to the low ECAT group. In the left hemisphere, regions of reduced

cortical thickness were observed in the paracentral lobule, pre- and post-central gyri, precuneus,

superior frontal gyrus, and superior parietal lobule (Fig 1, Table 3). In the right hemisphere,

reduced cortical thickness was observed in the postcentral gyrus, paracentral lobule, posterior

cingulate, superior frontal gyrus, and superior parietal lobule (Fig 1, Table 3). No main effects

for sex were observed, nor was an interaction between ECAT exposure and sex present.

Volumetric analyses revealed reduced gray matter in the high versus low ECAT group

before and after adjusting for covariates. Volumetric differences were observed in two regional

clusters. The first cluster was located bilaterally in the cerebellum and extended to the right

parietal cortex (Fig 2, Table 4). The second cluster was located primarily in the parietal lobe,

including the pre- and post-central gyri, inferior parietal lobule, and supramarginal gyrus (Fig

2, Table 4). The volumetric reduction was approximately 4% upon comparing the average val-

ues for high versus low ECAT group. A small main effect for sex was also observed, with

females displaying reduced gray matter volumes in frontal sub-lobar regions (not shown).

However, no interaction between ECAT group and sex was detected. Furthermore, no volu-

metric differences were seen in any of the white matter analyses.

Discussion

Overall findings

Our study found a bilateral, medial region of reduced cortical thickness within the posterior

frontal and anterior parietal lobes with early life high exposure to TRAP. Within the posterior

Fig 1. Statistically significant clusters using threshold free cluster enhancement. Clusters represent reduced cortical

thickness in the high ECAT group compared to the low ECAT group. Clusters were corrected for multiple

comparisons using a familywise error rate of p� 0.05.

https://doi.org/10.1371/journal.pone.0228092.g001
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frontal lobe, the precentral gyrus serves as the primary motor cortex and is responsible for exe-

cuting voluntary movements through connections to the spinothalamic tract [50]. Immedi-

ately posterior, the parietal lobe with the postcentral gyrus is the primary sensory area. It is a

topographically organized, functionally defined area responsible for integrating somatosensory

information such as touch and proprioception [51].

Table 3. Reduced cortical thickness in high ECAT exposure group compared to low ECAT exposure group with covariates.

Anatomical region Cluster size (vertices) Peak vertex MNI coordinates (X, Y, Z) Vertex p-value

Left hemisphere

Anterior cingulate

Medial frontal gyrus

Paracentral lobule

Postcentral gyrus

Precentral gyrus

Precuneus

Superior frontal gyrus

Superior parietal lobule

31070 -16–43 56

-8–39 55

-4–17 59

0.006

0.006

0.006

Middle frontal gyrus

Precentral gyrus

5350 -44 16 47

-34 10 29

-41 12 39

0.022

0.022

0.022

Fusiform gyrus 604 -21–92–12

-37–80–16

0.044

0.048

Inferior parietal lobule 279 8–33 4 0.049

Right hemisphere

Cingulate

Medial frontal gyrus

Paracentral lobule

Postcentral gyrus

Superior frontal gyrus

Ventromedial prefrontal cortex

16292 5–18 56

6–27 59

4–35 55

0.007

0.007

0.009

Postcentral gyrus 191 44–19 38 0.049

Vertices and clusters corrected for multiple comparisons (FWE) at P < 0.05 using TFCE; ECAT = Elemental carbon attributable to traffic; FWE = Familywise error rate;

MNI = Montreal neurological institute; TFCE = Threshold free cluster enhancement

https://doi.org/10.1371/journal.pone.0228092.t003

Fig 2. Reduced gray matter volume in the high ECAT group compared to the low ECAT group. Clusters were

corrected for multiple comparisons using threshold free cluster enhancement with a familywise error rate of p� 0.05.

Color bar represents–log(p) value.

https://doi.org/10.1371/journal.pone.0228092.g002
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We also observed reduced gray matter volume in relation to increased TRAP exposure, pri-

marily in the cerebellum, but also including the cerebellar vermis and the pre- and post-central

gyri. This decrease was selective to gray matter and without a corresponding increase in white

matter volume, which suggests the cerebellar changes are not due to a process of maturation,

which would alter both gray and white matter. The cerebellum is primarily a modulatory brain

region involved in the regulation of motor function, cognition, and emotion [52–56]. The cer-

ebellum in particular grows rapidly in the first two years of life [57], with cerebellar injuries

being related to cognitive developmental disorders [58] such as autism [59].

This combination of reduced cortical thickness primarily within the precentral gyrus and

the reduced cerebellar volume implicates that the effects of TRAP impact two regions involved

in motor function. Given these systems are early developing, they are more likely to be

impacted by adverse insults such as environmental toxicants during critical developmental

periods [60, 61]. Motor planning has been suggested to be related to cognitive performance

and disorders such as anxiety [62–64].

Supporting evidence of prenatal exposure to TRAP

Early life exposure to TRAP have been previously described. Transplacental exposure to air

pollutants with DNA adducts of polycyclic aromatic hydrocarbons (PAH) were measured in

umbilical cord blood [65–67]. Placental expression of brain-derived neurotrophic factor

(BDNF) and synapsin 1 (SYN1), two genes implicated in normal neurodevelopmental trajecto-

ries, decreased with increasing in utero exposure to PM2.5 [68]. Direct or indirect maternal

effects from air pollution, such as systemic low-grade inflammation, increased plasma viscos-

ity, hormonal disruption or epigenetic changes, potentially impair placenta function and lead

to neurological disruption by time of birth via mechanisms from decreased oxygen and nutri-

ent transport [69].

Evidence of postnatal TRAP within the human central nervous system

Besides direct inhalation in postnatal life, other possible mechanisms for TRAP to cause

detrimental central nervous system effects include translocation from the pulmonary,

Table 4. Reduced gray matter volume in high ECAT exposure group compared to low ECAT exposure group with covariates.

Anatomical region Cluster size (voxels) Peak voxel MNI coordinates(X, Y, Z) Voxel p-value

Left cerebellum 10731 -6–57–18

-2–56–26

-38–82–34

0.002

0.002

0.006

Right cerebellum 1258 40–70–54

32–70–46

30–84–44

0.016

0.020

0.028

145 36–60–15

30–50–14

0.044

0.047

Inferior parietal lobule 711 -51–46 51

-56–33 44

-52–33 52

0.006

0.039

0.046

Precentral gyrus 226 -34–39 48

-34–30 50

-28–44 51

0.034

0.036

0.037

251 -27–33 63 0.016

Voxel and clusters corrected for multiple comparisons (FWE) at P� 0.05 using TFCE; ECAT = Elemental carbon attributable to traffic; FWE = Familywise error rate;

MNI = Montreal neurological institute; TFCE = Threshold free cluster enhancement

https://doi.org/10.1371/journal.pone.0228092.t004
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gastrointestinal and circulatory systems [12, 70, 71]. Alterations in the blood brain barrier

(BBB), disruption of endothelium, and microglial activation, accompanied by neuroinflamma-

tion, as well as the ability of TRAP to exert effects on the brain secondarily with cardiovascular

dysfunction, all could potentially produce brain pathology [72–75]. Brain tissue from individu-

als, ages 2–45 years, living in highly polluted areas showed an increase in CD68, CD163, and

HLA-DR antigens implicating infiltrating monocytes or resident microglia activation [75].

Upregulation of pro-inflammatory markers such as COX2 and IL1-β, and the CD14 markers

for innate immune cells presented in the frontal cortex, vagus nerves and substantia nigra [75].

Increased Aβ42 deposition, BBB disruption, endothelial cell activation [75], and brain lesions

in the white matter of the prefrontal lobe were observed [75, 76]. Adolescent brains also fea-

tured significant amounts of lipfuscin in endothelial cortical capillaries [75]. Further studies

demonstrated elevations hyper-phosphorylated tau and α-synuclein [77].

Evidence of TRAP exposure interfering with brain development in model

systems

Early life TRAP exposures pose a substantial risk for interfering with normal brain develop-

ment as constituent exposures may permanently harm the maturing cortex. Ejaz, Anwar [78]

observed with histopathology and immunohistochemistry a positive dose-response relation-

ship between PM exposure and severity of neuronal loss, predominately in the motor cortex

and primary somatosensory cortex in rat models. Allen, Oberdorster [79] studied mice with

an exposure models employing concentrated ambient ultrafine (UFP) particles with two expo-

sure periods: postnatal day (PND) 4–7 and 10–13 (human 3rd trimester equivalent). This

model employed the most reactive constituents measured in air pollution at levels representa-

tive of high traffic areas in major U.S. cities [79]. UFP exposures provoked inflammation and

microglial activation, specifically, increased astrocytic activation in the amygdala [79]. Reduc-

tions in size of the corpus callosum were accompanied by hypomyelination, ventriculomegaly

[79]. These models revealed elevated glutamate in both sexes, however, only males showed an

altered ratio of glutamate and GABA with excitatory-inhibitory imbalance [79]. Finally, male

mice in the models featured repetitive and impulsive behaviors [79]. The findings indicated

the human 3rd trimester equivalent as potential susceptible to neurodevelopmental toxicity

from UFP [79]. The results also supported the notion that exposure to UFP air pollution

throughout periods of rapid neurodevelopment may increase the risk for developing ASD, and

potentially other disorders such as ADHD, periventricular leukomalacia and schizophrenia

[79].

Epidemiology of air pollution effects on mental health with imaging

features

In children, epidemiologic evidence also supports a link between air pollution and ASD,

ADHD, schizophrenia, developmental and cognitive delays [80–83]. Our group found evi-

dence that each 0.25 mg/m3 increase in early life TRAP was associated with increases in

depression and anxiety scores for the CCAAPS cohort [84]. In adults, there is similar evidence

associating air pollution with measures of anxiety and depression [85–87]. Gestational and

early childhood exposure to TRAP is associated with higher risk for schizophrenia, low birth

weight and ASD [88]. Individuals with childhood onset schizophrenia demonstrated diffuse

decreases in mean cortical thickness, with deficits localizing more anteriorly [89]. As reported

by Newman, Ryan [80] using the Behavior Assessment System for Children, 2nd edition, expo-

sure to the highest tertile of ECAT during the child’s first year of life was significantly associ-

ated with hyperactivity T-scores in the “at-risk” range at 7 years of age for those participants
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whose mothers had more than a high school education. ADHD has been associated with

reductions in cortical thickness in prefrontal and precentral regions, and in the parietal lobe

[90, 91]. The superior parietal lobule in particular appears to be heavily involved in attention

[92–94] and is strongly associated with differences functional connectivity in ADHD [92, 95–

98]. This may be due to a delay in the maturation [99] and functional development [97] of the

cortex. Similarly, pediatric anxiety is related to differences in structural gray matter volumes

[100], and Brunst, Ryan [101] found that myo-inositol may mediate anxiety levels in relation

to TRAP exposure. Cerebellar abnormalities are consistently associated with numerous mental

health disorders including anxiety, ADHD, ASD, and schizophrenia [55, 102–105]. Cerebellar

volumes have been inversely correlated with depression and anxiety [106], and aberrant con-

nectivity with other neural systems have been implicated as well [107, 108].

Cortical development, timing, thickness and volume

Cortical brain development in humans relies upon the division of progenitor cells within the

ventricular zone of the germinal matrix [109]. The derived neurons and glia cells migrate out-

ward toward the cortical plate and undergo a series of morphological changes where the cells

differentiate and integrate into functional circuits. Cortical neurogenesis and migration are

completed by the first week of postnatal life [110–112]. Subsequently, cortical development is

largely dependent on dendritic growth, growth of the terminal axon arborization, myelination,

and synaptogenesis [113–118]. Cerebral lamination in the developing fetus and at birth relies

on the appearance and the resolution of the subplate, with subplate neurons that serve as a cru-

cial regulator of cortical development [119]. Insults damaging one or more underlying cellular

events during neurogenesis and migration can produce a variety of cortical changes [120].

Cortical thinning itself may indicate a loss of dendrites and dendritic spines and changes in

myelination within specific brain systems [121, 122]. However, changes in cortical thickness

and brain volume appropriately occur from in utero into adulthood with distinct regional

timetables revealed noninvasively with fetal and postnatal neuroimaging [123]. During child-

hood, volumetric changes can occur from changes in neuronal size, neuropil, dendritic or axo-

nal arborization or from the vasculature, synaptic proliferation and pruning, along with

increasing myelination [124]. In the first two years of life, the human cerebral cortex under-

goes marked expansion with the cortical surface area essentially doubling between birth and

age 2 [118]. Lyall, Shi [125] found that cortical thickness by age 2 years reaches an estimated

97% of adult values, yet the corresponding cortical surface area is estimated at 69% adult val-

ues. Amlien, Fjell [126] explained cortical expansion of surface area and thickness across pri-

mate species as adhering to general allometric laws of scaling. They observed that cortical

thickness showed a continuously negative trajectory for the range of 4 to 30 years of age across

the entire cortex. In contrast, cortical surface area was positively related to age until about 12

years, with little subsequent differences. Gogtay, Giedd [127] conducted anatomical MRI

examinations every two years between the ages of 4 and 21 years for 13 participants. Matura-

tion of the cortex followed the evolutionary sequence in which the regions were created. Gray

matter volumes peaked the earliest in primary sensorimotor areas and the latest in higher

order association areas. The participants in the current study were imaged at age 12 years,

which further supports that our findings are not related to changes occurring with the comple-

tion of typical cortical maturation associated with age, especially for sensorimotor regions.

Limitations

While our cohort is part of an ongoing, longitudinal evaluation of TRAP, our structural out-

comes were ascertained based upon only one MRI examination and may be influenced by
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interindividual variance or cohort effects. The high-low design targeting exposure during a

given period (first year of life) and time of imaging at the same age (12 y) attempted to mini-

mize the effects of changes in developmental maturation and unaccounted individual vari-

ances. However, if both groups are adversely impacted by TRAP, our approach may

underestimate the effects due to our design. The regional specificity of the pre- and post-cen-

tral gyri and the cerebellar gray matter findings with the absence of white matter volumetric

findings suggests that these early developing structures incurred an insult altering their struc-

tural development. However, the structural evaluation of a single timepoint in an ongoing

developmental process is a limitation. In the future, a longitudinal analysis with a second MRI

evaluation is planned for this cohort as this is more sensitive to individual brain developmental

patterns due to the exclusion of the influence of large interindividual variations. Also, we are

unable to definitively exclude contributions from later childhood TRAP exposure with this

analysis. However, given the key findings in structures that develop during the first and second

trimester, it is plausible these structures have been impacted since the first year of life. It is also

possible that our estimate of outdoor TRAP exposure at the participants’ homes may not

reflect daily personal exposures due to home characteristics that affect the outdoor-indoor

penetration of pollutants and individual time-activity patterns of participants. However, esti-

mating health effects associated with ambient pollutant concentrations offer the potential to

guide regulatory limits and public health actions on a population-level. Also, inclusion criteria

for the CCAAPS cohort required having at least one biological parent with atopy. Therefore,

future studies should include children born to parents with and without allergic disease to con-

firm the generalizability of our results.

This study design along with the SPM12 (including CAT) software may limit the sensitivity

of the analysis as there may be other regions with volume or cortical thickness changes beyond

our ability to detect. We acknowledge this methodology is not well-suited for assessing volume

differences in structures such as the hippocampus or amygdala. To minimize imaging process-

ing effects, we analyzed the cortical thickness data using SPM12 and also with a rival software

approach, known as Freesurfer [17], where a similar result was observed, but not shown.

Future studies of cohorts evaluating TRAP should also include measures of sensory-motor

function.

Conclusions

Our study found that children with higher levels of exposure to TRAP demonstrated regional

reductions of cortical thickness and gray matter volume relative to children with lower levels.

Reduced cortical thickness and volume loss in our study population are on the order of 3–4%.

These findings are consistent with a process damaging the development of the sensorimotor

cortex, frontal cortex, cerebellar vermis and cerebellar hemispheres as these structures form

early in development and are vulnerable to injury.

Supporting information

S1 Fig. VBM and cortical thickness workflows in CAT12 toolbox.
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