Skip to main content
Log in

Can I Have My Coffee and Drink It? A Systematic Review and Meta-analysis to Determine Whether Habitual Caffeine Consumption Affects the Ergogenic Effect of Caffeine

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 16 October 2022

A Letter to the Editor to this article was published on 16 October 2022

Abstract

Objective

The aim was to quantify the proportion of the literature on caffeine supplementation that reports habitual caffeine consumption, and determine the influence of habitual consumption on the acute exercise response to caffeine supplementation, using a systematic review and meta-analytic approach.

Methods

Three databases were searched, and articles screened according to inclusion/exclusion criteria. Three-level meta-analyses and meta-regression models were used to investigate the influence of habitual caffeine consumption on caffeine’s overall ergogenic effect and within different exercise types (endurance, power, strength), in men and women, and in trained and untrained individuals. Sub-analyses were performed according to the following: acute relative dose (< 3, 3–6, > 6 mg/kg body mass [BM]); whether the acute caffeine dose provided was lower or higher than the mean daily caffeine dose; and the caffeine withdrawal period prior to the intervention (< 24, 24–48, > 48 h).

Results

Sixty caffeine studies included sufficient information on habitual consumption to be included in the meta-analysis. A positive overall effect of caffeine was shown in comparison to placebo (standard mean difference [SMD] = 0.25, 95% confidence interval [CI] 0.20–0.30; p < 0.001) with no influence of relative habitual caffeine consumption (p = 0.59). Subgroup analyses showed a significant ergogenic effect when the caffeine dose was < 3 mg/kg BM (SMD = 0.26, 95% CI 0.12–0.40; p = 0.003) and 3–6 mg/kg BM (SMD = 0.26, 95% CI 0.21–0.32; p < 0.0001), but not > 6 mg/kg BM (SMD = 0.11, 95% CI − 0.07 to 0.30; p = 0.23); when the dose was both higher (SMD = 0.26, 95% CI 0.20–0.31; p < 0.001) and lower (SMD = 0.21, 95% CI 0.06–0.36; p = 0.006) than the habitual caffeine dose; and when withdrawal was < 24 h, 24–48 h, and > 48 h. Caffeine was effective for endurance, power, and strength exercise, with no influence (all p ≥ 0.23) of relative habitual caffeine consumption within exercise types. Habitual caffeine consumption did not modify the ergogenic effect of caffeine in male, female, trained or untrained individuals.

Conclusion

Habitual caffeine consumption does not appear to influence the acute ergogenic effect of caffeine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Int J Sport Nutr Exerc Metab. 2018;28(2):104–25.

    Article  PubMed  CAS  Google Scholar 

  2. Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z. Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br J Sports Med. 2020;54(11):681–8.

    Article  PubMed  Google Scholar 

  3. Aguilar-Navarro M, Munoz G, Salinero JJ, Munoz-Guerra J, Fernandez-Alvarez M, Plata MDM, et al. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. 2019;11(2):286.

    Article  PubMed Central  CAS  Google Scholar 

  4. Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R399-404.

    Article  PubMed  CAS  Google Scholar 

  5. Nehlig A. Are we dependent upon coffee and caffeine? A review on human and animal data. Neurosci Biobehav Rev. 1999;23(4):563–76.

    Article  PubMed  CAS  Google Scholar 

  6. Southward K, Rutherfurd-Markwick K, Badenhorst C, Ali A. The role of genetics in moderating the inter-individual differences in the ergogenicity of caffeine. Nutrients. 2018;10(10):1352.

    Article  PubMed Central  Google Scholar 

  7. Pickering C, Grgic J. Caffeine and exercise: what next? Sports Med. 2019;49(7):1007–30.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saunders B, de Oliveira LF, da Silva RP, de Salles PV, Goncalves LS, Yamaguchi G, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27(11):1240–7.

    Article  PubMed  CAS  Google Scholar 

  9. Bangsbo J, Jacobsen K, Nordberg N, Christensen NJ, Graham T. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol. 1992;72(4):1297–303.

    Article  PubMed  CAS  Google Scholar 

  10. Van Soeren MH, Sathasivam P, Spriet LL, Graham TE. Caffeine metabolism and epinephrine responses during exercise in users and nonusers. J Appl Physiol. 1993;75(2):805–12.

    Article  PubMed  Google Scholar 

  11. Pickering C, Kiely J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018;48(1):7–16.

    Article  PubMed  Google Scholar 

  12. Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93(4):1227–34.

    Article  PubMed  CAS  Google Scholar 

  13. Beaumont R, Cordery P, Funnell M, Mears S, James L, Watson P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J Sports Sci. 2017;35(19):1920–7.

    Article  PubMed  Google Scholar 

  14. Evans M, Tierney P, Gray N, Hawe G, Macken M, Egan B. Acute ingestion of caffeinated chewing gum improves repeated sprint performance of team sport athletes with low habitual caffeine consumption. Int J Sport Nutr Exerc Metab. 2018;28(3):221–7.

    Article  PubMed  CAS  Google Scholar 

  15. Lara B, Ruiz-Moreno C, Salinero JJ, Del Coso J. Time course of tolerance to the performance benefits of caffeine. PLoS One. 2019;14(1): e0210275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dodd SL, Brooks E, Powers SK, Tulley R. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol Occup Physiol. 1991;62(6):424–9.

    Article  PubMed  CAS  Google Scholar 

  17. Goncalves LS, Painelli VS, Yamaguchi G, Oliveira LF, Saunders B, da Silva RP, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 2017;123(1):213–20.

    Article  PubMed  CAS  Google Scholar 

  18. Sabol F, Grgic J, Mikulic P. The effects of 3 different doses of caffeine on jumping and throwing performance: a randomized, double-blind, crossover study. Int J Sports Physiol Perform. 2019;22:1170–7.

    Article  Google Scholar 

  19. Clarke ND, Richardson DL. Habitual caffeine consumption does not affect the ergogenicity of coffee ingestion during a 5 km cycling time trial. Int J Sport Nutr Exerc Metab. 2020;31(1):13–20.

    Article  PubMed  Google Scholar 

  20. Grgic J, Mikulic P. Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: no influence of habitual caffeine intake. Eur J Sport Sci. 2021;21(8):1165–75.

    Article  PubMed  Google Scholar 

  21. de Salles PV, Teixeira EL, Tardone B, Moreno M, Morandini J, Larrain VH, et al. Habitual caffeine consumption does not interfere with the acute caffeine supplementation effects on strength endurance and jumping performance in trained individuals. Int J Sport Nutr Exerc Metab. 2021;31(4):321–8.

    Article  Google Scholar 

  22. Pickering C, Kiely J. What should we do about habitual caffeine use in athletes? Sports Med. 2019;49(6):833–42.

    Article  PubMed  Google Scholar 

  23. Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Filip A, Wilk M, Krzysztofik M, Del Coso J. Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: is it due to the disparity in the criteria that defines habitual caffeine intake? Nutrients. 2020;12(4):1087.

    Article  PubMed Central  CAS  Google Scholar 

  25. Flinn S, Gregory J, McNaughton LR, Tristram S, Davies P. Caffeine ingestion prior to incremental cycling to exhaustion in recreational cyclists. Int J Sports Med. 1990;11(3):188–93.

    Article  PubMed  CAS  Google Scholar 

  26. Woolf K, Bidwell WK, Carlson AG. Effect of caffeine as an ergogenic aid during anaerobic exercise performance in caffeine naive collegiate football players. J Strength Cond Res. 2009;23(5):1363–9.

    Article  PubMed  Google Scholar 

  27. Eckerson JM, Bull AJ, Baechle TR, Fischer CA, O’Brien DC, Moore GA, et al. Acute ingestion of sugar-free red bull energy drink has no effect on upper body strength and muscular endurance in resistance trained men. J Strength Cond Res. 2013;27(8):2248–54.

    Article  PubMed  Google Scholar 

  28. Stojanovic E, Stojiljkovic N, Scanlan AT, Dalbo VJ, Stankovic R, Antic V, et al. Acute caffeine supplementation promotes small to moderate improvements in performance tests indicative of in-game success in professional female basketball players. Appl Physiol Nutr Metab. 2019;44(8):849–56.

    Article  PubMed  CAS  Google Scholar 

  29. Lane SC, Hawley JA, Desbrow B, Jones AM, Blackwell JR, Ross ML, et al. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab. 2014;39(9):1050–7.

    Article  PubMed  CAS  Google Scholar 

  30. Ranchordas MK, King G, Russell M, Lynn A, Russell M. Effects of caffeinated gum on a battery of soccer-specific tests in trained university-standard male soccer players. Int J Sport Nutr Exerc Metab. 2018;28(6):629–34.

    Article  PubMed  CAS  Google Scholar 

  31. Doherty M. The effects of caffeine on the maximal accumulated oxygen deficit and short-term running performance. Int J Sport Nutr. 1998;8(2):95–104.

    Article  PubMed  CAS  Google Scholar 

  32. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;29(372): n71.

    Article  Google Scholar 

  33. Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. Beta-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51(8):658–69.

    Article  PubMed  Google Scholar 

  34. Zhang Y, Alonso-Coello P, Guyatt GH, Yepes-Nunez JJ, Akl EA, Hazlewood G, et al. GRADE Guidelines: 19. Assessing the certainty of evidence in the importance of outcomes or values and preferences-Risk of bias and indirectness. J Clin Epidemiol. 2019;111:94–104.

    Article  PubMed  Google Scholar 

  35. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;28(366): l4898.

    Article  Google Scholar 

  36. Harrer M, Cuijpers P, Furukawa T, Ebert D. 2019. Doing meta-analysis in R: A hands-on guide. https://doi.org/10.5281/zenodo.2551803.

  37. Sawilowsky SS. New effect size rules of thumb. J Mod Appl Stat Methods. 2009;8(2):26.

    Article  Google Scholar 

  38. Boulenger JP, Patel J, Post RM, Parma AM, Marangos PJ. Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci. 1983;32(10):1135–42.

    Article  PubMed  CAS  Google Scholar 

  39. Svenningsson P, Nomikos GG, Fredholm BB. The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J Neurosci. 1999;19(10):4011–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995;78(3):867–74.

    Article  PubMed  CAS  Google Scholar 

  41. Grgic J. Caffeine ingestion enhances Wingate performance: a meta-analysis. Eur J Sport Sci. 2018;18(2):219–25.

    Article  PubMed  Google Scholar 

  42. Southward K, Rutherfurd-Markwick KJ, Ali A. Correction to: The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Med. 2018;48(10):2425–41.

    Article  PubMed  Google Scholar 

  43. Salinero JJ, Lara B, Del Coso J. Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis. Res Sports Med. 2019;27(2):238–56.

    Article  PubMed  Google Scholar 

  44. Ferreira TT, da Silva JVF, Bueno NB. Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: a systematic review and meta-analyses. Crit Rev Food Sci Nutr. 2021;61(15):2587–600.

    Article  PubMed  CAS  Google Scholar 

  45. Sokmen B, Armstrong LE, Kraemer WJ, Casa DJ, Dias JC, Judelson DA, et al. Caffeine use in sports: considerations for the athlete. J Strength Cond Res. 2008;22(3):978–86.

    Article  PubMed  Google Scholar 

  46. Van Soeren MH, Graham TE. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol. 1998;85(4):1493–501.

    Article  PubMed  Google Scholar 

  47. Irwin C, Desbrow B, Ellis A, O’Keeffe B, Grant G, Leveritt M. Caffeine withdrawal and high-intensity endurance cycling performance. J Sports Sci. 2011;29(5):509–15.

    Article  PubMed  Google Scholar 

  48. Desbrow B, Hughes R, Leveritt M, Scheelings P. An examination of consumer exposure to caffeine from retail coffee outlets. Food Chem Toxicol. 2007;45(9):1588–92.

    Article  PubMed  CAS  Google Scholar 

  49. Desbrow B, Henry M, Scheelings P. An examination of consumer exposure to caffeine from commercial coffee and coffee-flavoured milk. J Food Compos Anal. 2012;28(2):114–8.

    Article  CAS  Google Scholar 

  50. Areta JL, Irwin C, Desbrow B. Inaccuracies in caffeine intake quantification and other important limitations in recent publication by Goncalves et al. J Appl Physiol. 2017;123(5):1414.

    Article  PubMed  CAS  Google Scholar 

  51. Grgic J, Mikulic P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur J Sport Sci. 2017;17(8):1029–36.

    Article  PubMed  Google Scholar 

  52. Ganio MS, Johnson EC, Lopez RM, Stearns RL, Emmanuel H, Anderson JM, et al. Caffeine lowers muscle pain during exercise in hot but not cool environments. Physiol Behav. 2011;102(3–4):429–35.

    Article  PubMed  CAS  Google Scholar 

  53. Zbinden-Foncea H, Rada I, Gomez J, Kokaly M, Stellingwerff T, Deldicque L, et al. Effects of caffeine on countermovement-jump performance variables in elite male volleyball players. Int J Sports Physiol Perform. 2018;13(2):145–50.

    Article  PubMed  Google Scholar 

  54. Graham-Paulson T, Perret C, Goosey-Tolfrey V. Improvements in cycling but not handcycling 10 km time trial performance in habitual caffeine users. Nutrients. 2016;8(7):393.

    Article  PubMed Central  Google Scholar 

  55. Trexler ET, Smith-Ryan AE, Roelofs EJ, Hirsch KR, Mock MG. Effects of coffee and caffeine anhydrous on strength and sprint performance. Eur J Sport Sci. 2016;16(6):702–10.

    Article  PubMed  Google Scholar 

  56. Astorino TA, Cottrell T, Talhami Lozano A, Aburto-Pratt K, Duhon J. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiol Behav. 2012;106(2):211–7.

    Article  PubMed  CAS  Google Scholar 

  57. Ellis M, Noon M, Myers T, Clarke N. Low doses of caffeine: enhancement of physical performance in elite adolescent male soccer players. Int J Sports Physiol Perform. 2019;14(5):569–75.

    Article  PubMed  Google Scholar 

  58. Beaumont RE, James LJ. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat. J Sci Med Sport. 2017;20(11):1024–8.

    Article  PubMed  Google Scholar 

  59. Doherty M, Smith P, Hughes M, Davison R. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sports Sci. 2004;22(7):637–43.

    Article  PubMed  Google Scholar 

  60. Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008;102(2):127–32.

    Article  PubMed  CAS  Google Scholar 

  61. Pataky MW, Womack CJ, Saunders MJ, Goffe JL, D’Lugos AC, El-Sohemy A, et al. Caffeine and 3-km cycling performance: effects of mouth rinsing, genotype, and time of day. Scand J Med Sci Sports. 2016;26(6):613–9.

    Article  PubMed  CAS  Google Scholar 

  62. Woolf K, Bidwell WK, Carlson AG. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int J Sport Nutr Exerc Metab. 2008;18(4):412–29.

    Article  PubMed  CAS  Google Scholar 

  63. Glaister M, Howatson G, Abraham CS, Lockey RA, Goodwin JE, Foley P, et al. Caffeine supplementation and multiple sprint running performance. Med Sci Sports Exerc. 2008;40(10):1835–40.

    Article  PubMed  CAS  Google Scholar 

  64. Foskett A, Ali A, Gant N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int J Sport Nutr Exerc Metab. 2009;19(4):410–23.

    Article  PubMed  CAS  Google Scholar 

  65. Wilk M, Krzysztofik M, Filip A, Zajac A, Del Coso J. The effects of high doses of caffeine on maximal strength and muscular endurance in athletes habituated to caffeine. Nutrients. 2019;11(8):1912.

    Article  PubMed Central  CAS  Google Scholar 

  66. Wilk M, Filip A, Krzysztofik M, Maszczyk A, Zajac A. The acute effect of various doses of caffeine on power output and velocity during the bench press exercise among athletes habitually using caffeine. Nutrients. 2019;11(7):1465.

    Article  PubMed Central  CAS  Google Scholar 

  67. Skinner TL, Desbrow B, Arapova J, Schaumberg MA, Osborne J, Grant GD, et al. Women experience the same ergogenic response to caffeine as men. Med Sci Sports Exerc. 2019;51(6):1195–202.

    Article  PubMed  CAS  Google Scholar 

  68. Venier S, Grgic J, Mikulic P. Caffeinated gel ingestion enhances jump performance, muscle strength, and power in trained men. Nutrients. 2019;11(4):937.

    Article  PubMed Central  CAS  Google Scholar 

  69. Duncan MJ, Dobell AP, Caygill CL, Eyre E, Tallis J. The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. Eur J Sport Sci. 2019;19(1):103–11.

    Article  PubMed  Google Scholar 

  70. Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018;50(8):1570–8.

    Article  PubMed  CAS  Google Scholar 

  71. Smirmaul BP, de Moraes AC, Angius L, Marcora SM. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. Eur J Appl Physiol. 2017;117(1):27–38.

    Article  PubMed  CAS  Google Scholar 

  72. Graham-Paulson TS, Perret C, Watson P, Goosey-Tolfrey VL. Improvement of sprint performance in wheelchair sportsmen with caffeine supplementation. Int J Sports Physiol Perform. 2016;11(2):214–20.

    Article  PubMed  Google Scholar 

  73. Davis J-K, Green JM, Laurent CM. Effects of caffeine on resistance training performance on repetitions to failure. J Caffeine Res. 2012;2(1):31–7.

    Article  CAS  Google Scholar 

  74. Roelands B, Buyse L, Pauwels F, Delbeke F, Deventer K, Meeusen R. No effect of caffeine on exercise performance in high ambient temperature. Eur J Appl Physiol. 2011;111(12):3089–95.

    Article  PubMed  CAS  Google Scholar 

  75. Astorino TA, Martin BJ, Schachtsiek L, Wong K, Ng K. Minimal effect of acute caffeine ingestion on intense resistance training performance. J Strength Cond Res. 2011;25(6):1752–8.

    Article  PubMed  Google Scholar 

  76. Souza DB, Duncan M, Polito MD. Improvement of lower-body resistance-exercise performance with blood-flow restriction following acute caffeine intake. Int J Sports Physiol Perform. 2019;14(2):216–21.

    Article  PubMed  Google Scholar 

  77. Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD. The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci. 2012;30(2):115–20.

    Article  PubMed  Google Scholar 

  78. Potgieter S, Wright HH, Smith C. Caffeine improves triathlon performance: a field study in males and females. Int J Sport Nutr Exerc Metab. 2018;28(3):228–37.

    Article  PubMed  CAS  Google Scholar 

  79. Andre T, Green M, Gann J, O’Neal E, Coates T. Effects of caffeine on repeated upper/lower body Wingates and handgrip performance. Int J Exerc Sci. 2015;8(3):5.

    Google Scholar 

  80. Jenkins NT, Trilk JL, Singhal A, O’Connor PJ, Cureton KJ. Ergogenic effects of low doses of caffeine on cycling performance. Int J Sport Nutr Exerc Metab. 2008;18(3):328–42.

    Article  PubMed  CAS  Google Scholar 

  81. Glaister M, Muniz-Pumares D, Patterson SD, Foley P, McInnes G. Caffeine supplementation and peak anaerobic power output. Eur J Sport Sci. 2015;15(5):400–6.

    Article  PubMed  Google Scholar 

  82. Grgic J, Pickering C, Bishop DJ, Schoenfeld BJ, Mikulic P, Pedisic Z. CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. J Int Soc Sports Nutr. 2020;17(1):21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Grgic J, Pickering C, Bishop DJ, Del Coso J, Schoenfeld BJ, Tinsley GM, et al. ADOR2A C allele carriers exhibit ergogenic responses to caffeine supplementation. Nutrients. 2020;12(3):741.

    Article  PubMed Central  CAS  Google Scholar 

  84. Wilk M, Filip A, Krzysztofik M, Gepfert M, Zajac A, Del Coso J. Acute caffeine intake enhances mean power output and bar velocity during the bench press throw in athletes habituated to caffeine. Nutrients. 2020;12(2):406.

    Article  PubMed Central  CAS  Google Scholar 

  85. Tomazini F, Santos-Mariano A, Andrade-Souza VA, Sebben VC, De Maria CA, Coelho DB, et al. Caffeine but not acetaminophen increases 4-km cycling time-trial performance. PharmaNutrition. 2020;12: 100181.

    Article  Google Scholar 

  86. Norum M, Risvang LC, Bjornsen T, Dimitriou L, Ronning PO, Bjorgen M, et al. Caffeine increases strength and power performance in resistance-trained females during early follicular phase. Scand J Med Sci Sports. 2020;30(11):2116–29.

    Article  PubMed  Google Scholar 

  87. Jones L, Johnstone I, Day C, Le Marquer S, Hulton AT. The dose-effects of caffeine on lower body maximal strength, muscular endurance, and rating of perceived exertion in strength-trained females. Nutrients. 2021;13(10):3342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Burke BI, Travis SK, Gentles JA, Sato K, Lang HM, Bazyler CD. The effects of caffeine on jumping performance and maximal strength in female collegiate athletes. Nutrients. 2021;13(8):2496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Khcharem A, Souissi M, Atheymen R, Souissi W, Sahnoun Z. Acute caffeine ingestion improves 3-km run performance, cognitive function, and psychological state of young recreational runners. Pharmacol Biochem Behav. 2021;207: 173219.

    Article  PubMed  CAS  Google Scholar 

  90. Filip-Stachnik A, Krawczyk R, Krzysztofik M, Rzeszutko-Belzowska A, Dornowski M, Zajac A, et al. Effects of acute ingestion of caffeinated chewing gum on performance in elite judo athletes. J Int Soc Sports Nutr. 2021;18(1):49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Karayigit R, Yildiz H, ahin MA, Sisman A, Sari C, Ersöz G, et al. The effects of low-dose caffeinated coffee ingestion on strength and muscular endurance performance in male athletes; 2021.

  92. Filip-Stachnik A, Wilk M, Krzysztofik M, Lulinska E, Tufano JJ, Zajac A, et al. The effects of different doses of caffeine on maximal strength and strength-endurance in women habituated to caffeine. J Int Soc Sports Nutr. 2021;18(1):25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Karayigit R, Naderi A, Akca F, Cruz C, Sarshin A, Yasli BC, et al. Effects of different doses of caffeinated coffee on muscular endurance, cognitive performance, and cardiac autonomic modulation in caffeine naive female athletes. Nutrients. 2020;13(1):2.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Saunders.

Ethics declarations

Funding

No specific funding was received for writing this review. Felipe Marticorena (2019/20614-0; 2021/05847-8), Beatriz Grecco (2020/02391-0), Gabriel Barreto (2020/12036-3), and Bryan Saunders (2016/50438-0; 2021/06836-0) have been financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo. Bryan Saunders has received a grant from Faculdade de Medicina da Universidade de São Paulo (2020.1.362.5.2).

Conflict of interest

Several of the authors (GB, BS) have previously received caffeine supplements at no cost from a national supplement company (Farmácia Analítica, Rio de Janeiro, Brazil) for work unrelated to the current article. Farmácia Analítica have not had any input (financial, intellectual, or otherwise) into this review. The remaining authors report no conflict of interest.

Author contributions

BS is responsible for the conception of the work. FM performed the searches. AC, FM, BG, and GB performed the screening, and AC, FM, and BG performed the data extraction. GB performed the data analysis. AC and BS are responsible for the initial writing of the manuscript, and all authors were involved in the editing process. All authors approved the final version of the manuscript.

Data availability

Extracted data are available in a supplementary file, and analysis codes are available upon request.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, A., Marticorena, F.M., Grecco, B.H. et al. Can I Have My Coffee and Drink It? A Systematic Review and Meta-analysis to Determine Whether Habitual Caffeine Consumption Affects the Ergogenic Effect of Caffeine. Sports Med 52, 2209–2220 (2022). https://doi.org/10.1007/s40279-022-01685-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01685-0

Navigation