
mRNA COVID-19 vaccines in young children: Summary and Work Group interpretation

Sara Oliver, MD, MSPH ACIP Meeting June 17, 2022

cdc.gov/coronavirus

Moderna COVID-19 vaccine Children ages 6 months–4 years

. . .

Clinical trial structure

- Trial conducted from December 2021 through February 2022
- Children ages 6 months—5 years in the United States randomized 3:1 vaccine to saline placebo
 - Analyses performed separately for ages 6–23 months and 2–5 years
 - Results pooled for a combined estimate for ages 6 months–5 years
- Two doses of 25µg separated by 28 days
- Median follow-up time post-dose 2: 2.5 months

Clinical trial structure

Moderna COVID-19 vaccine: Children ages 6 months–5 years

Efficacy and safety populations:

- 6–23 months: ~2300 children; 1700 vaccine and 600 placebo
- 2–5 years: ~4000 children; 3000 vaccine and 1000 placebo
- TOTAL 6 months–5 years: ~6400 children; 4800 vaccine and 1600 placebo

Immunogenicity population:

- 6-23 months: 230 children 2-5 years: 264 children

Efficacy data reviewed by Work Group

Moderna COVID-19 vaccine: Children ages 6 months–5 years

- Efficacy endpoint^{1,2}: Subjects with or without evidence of prior infection
 - -6-23 months: 50.6% (21.4-68.6%)
 - 2-5 years: **36.5**% (12.5-54.0%)
 - Overall 6 months-5 years: 41.5% (23.8-55.0%)
- Higher confidence in the estimate, based on 181 COVID-19 cases in vaccine group and 97 COVID-19 cases in placebo group
- Efficacy in the trial consistent with post-authorization vaccine effectiveness for Moderna COVID-19 vaccine in adults 18–64 years during Omicron
 - Effectiveness against infection 2 months after dose 2 was **35**% (24–45%)

¹<u>CDC definition</u>: At least 1 prespecified clinical symptom and a positive RT-PCR ²Efficacy estimates presented represent the manufacturer analysis. For GRADE, estimates based on relative risks will be presented

Immunogenicity data reviewed by Work Group Moderna COVID-19 vaccine: Children ages 6 months–5 years

- Antibody levels measured 28 days after the second dose for participants without prior infection
- Antibody responses after two 25µg doses in children ages 6 months–5 years compared to two 100µg doses in individuals ages 18–25 years
 - Ratio for 6-23 months: 1.28 (1.12-1.47)
 - Ratio for 2–5 years: 1.01 (0.90–1.17)

- No deaths were reported in any trial participants
- Serious adverse events (SAE) rare overall
 - SAEs occurred in 0.5% of vaccine recipients and 0.2% of placebo recipients
 - One vaccine recipient had 2 SAEs (fever and febrile seizure) that are possibly related to the vaccine^{*}
- No cases of myocarditis in any trial participants
- No cases of vaccine-associated anaphylaxis in any trial participants

- Local reactions occurring within 7 days were common
 - Pain at the injection site most common
- Systemic reactions within 7 days were common
 - Fatigue and headache most common in children ages 2–5 years
 - Irritability and sleepiness more common in children ages 6–23 months
- Symptom onset was usually 1–2 days post-vaccine receipt
- Most symptoms were mild and resolved after 2–3 days

- Fevers were more common after vaccine than placebo, and more common after dose 2 than dose 1
- Most fevers were reported on day 1 and 2 after either dose and lasted for a median of 1 day
- Fevers after other routine vaccines given at this age can be ~30%
- One febrile seizure possibly related to vaccine noted (3 days after dose 1)

Fever post-dose 2	Vaccine	Placebo		
Any fever	730/4532 (16.1%)	107/1483 (7.2%)		
Grade 4 fever (104° ^F or higher)	10/4532 (0.2%)	0/1483 (0%)		

- Imbalances were noted with some respiratory infections
 - Overall, events were rare (occurred in <1% of trial participants)
- No pattern for respiratory infections noted, and the clinical characteristics were typical and consistent with seasonal respiratory infections
 - Testing not performed systematically; testing for additional respiratory pathogens may have varied by results of COVID-19 testing
- Lymphadenopathy (axillary or groin) noted in 9% of vaccine recipients, compared to 2% of placebo recipients

Conclusions

- Efficacy seen after two doses of Moderna COVID-19 vaccine in children ages 6 months–5 years of age consistent with real-world vaccine effectiveness in all other ages during Omicron predominance
- Antibody levels after 2 doses in children ages 6 months–5 years produces similar antibody levels after 2 doses in individuals ages 18–24 years
- Reactogenicity post-vaccine consistent with other recommended vaccines in this age group

Pfizer-BioNTech COVID-19 vaccine Children ages 6 months–4 years

. . .

Clinical trial structure

Pfizer-BioNTech COVID-19 vaccine: Children ages 6 months-4 years

- Trial conducted from June 2021 through April 2022
- Children ages 6 months—4 years in the United States randomized 2:1 vaccine to saline placebo
 - Analyses performed separately for 6–23 months and 2–5 years
 - Results pooled for a combined estimate for 6 months–5 years
- Three doses, 3µg each: Dose 1 and dose 2 separated by 21 days Dose 2 and dose 3 separated by at least 8 weeks
 - Interval between dose 2 and dose 3 in the trial longer than authorized interval:
 ~16 weeks (range 8–32 weeks) for children ages 6–23 months
 ~11 weeks (range 8–34 weeks) for children ages 2–4 years
- Median follow-up time post-dose 3: 1.3 months

Pfizer-BioNTech trial timeline, ages 2–4 years

Ages 2–4 years, initial cohort

Ages 2–4 years, expanded enrollment*

First doses		> Sep 21) Oct 21	> Nov 21	> Dec 21	> Jan 22	
Second doses		> Sep 21) Oct 21	Nov 21	> Dec 21	> Jan 22	
Unblinding) Oct 21	> Nov 21) Dec 21) Jan 22	> Feb 22 > Mar 22 > Apr 22
Third doses						> Jan 22	Feb 22 Mar 22

Blinded person-time contributing to dose 3 efficacy evaluation

N=886; 606 in BNT group, 280 in placebo group

Delta predominance

Omicron predominance

Mar 22

Apr 22

Feb 22

* An additional safety expansion was initiation on January 31, 2022; children in the additional safety expansion would not have contributed person-time to post-dose 3 follow-up by the April 29 EUA submission.

Pfizer-BioNTech trial timeline, ages 6–23 months

Ages 6–23 months, initial cohort

Ages 6–23 months, expanded enrollment*

First doses		> Sep 21) Oct 21	> Nov 21	> Dec 21	> Jan 22	> Feb 22) Mar 22	> Apr 22	
Second doses) Oct 21	Nov 21	> Dec 21	> Jan 22	> Feb 22) Mar 22	> Apr 22	
Unblinding			> Oct 21	> Nov 21) Dec 21) Jan 22	> Feb 22) Mar 22	Apr 22	
Third doses) Jan 22	Feb 22) Mar 22	> Apr 22	

Blinded person-time contributing to dose 3 efficacy evaluation

N=570; 386 in BNT group, 184 in placebo group

Delta predominance

Omicron predominance

Mar 22 >

Apr 22

Feb 22 >

Number of children contributed *blinded* person-time to efficacy evaluation, by age group

Efficacy data reviewed by Work Group

Pfizer-BioNTech COVID-19 vaccine: Children ages 6 months–4 years

- Efficacy endpoint^{1,2}: Subjects with or without evidence of prior infection
 - -6-23 months: 75.5% (-370.1-99.6%)
 - 2-4 years: 82.3% (-8.0-98.3%)
 - Overall 6 months-4 years: 80.3% (13.9-96.7%)
- Lower confidence in the estimates, based on 3 COVID-19 cases in vaccine group and 7 COVID-19 cases in placebo group
- Post-authorization vaccine effectiveness (VE) for Pfizer-BioNTech COVID-19 vaccine in adolescents ages 12–15 years during Omicron:
 - VE against infection 2 months after dose 2 was 28.9% (24.5–33.1%)
 - VE against infection 2 months after dose 3 was 42.9% (34.5–50.2%)

¹<u>CDC definition</u>: At least 1 prespecified clinical symptom and a positive RT-PCR ²Efficacy estimates presented represent the manufacturer analysis. For GRADE, estimates based on relative risks will be presented

Efficacy data reviewed by Work Group

Pfizer-BioNTech COVID-19 vaccine: Children ages 6 months–4 years

- Post-dose 3 efficacy data are difficult to interpret
 - Limited number of cases accrued during blinded follow-up
 - Protocol specified need for 21 cases prior to formal efficacy analysis, only 10 included in current descriptive analysis
 - Dosing interval between dose 2 and dose 3 varied and are longer than authorized interval
 - Median blinded follow up time limited
 - 35 days for children ages 6–23 months
 - 40 days for children ages 2–4 years

Immunogenicity data reviewed by Work Group

Pfizer-BioNTech COVID-19 vaccine: Children ages 6 months-4 years

- Antibody levels measured 1 month post-dose 3 for participants without prior infection
- Antibody responses after three 3µg doses in children ages 6 months–4 years compared to two 30µg doses in individuals ages 16–25 years
 - Ratio for 6-23 months: 1.19 (1.00-1.43)
 - Ratio for 2-4 years: 1.30 (1.13-1.50)
 - Overall ratio for 6 months-5 years: 1.26 (1.13-1.40)
- Immunogenicity population:
 - 6-23 months: 82 children
 - 2–5 years: 143 children

Data reviewed by Work Group

Pfizer-BioNTech COVID-19 vaccine: Children ages 6 months–4 years

For comparison, results after dose 2 are shown

	Dose 2 ¹ Efficacy ^{2,3}	Dose 2 Immunobridging ⁴
6–23 months	14.5% (-24.9–41.0%)	Non-inferiority criteria met
2–4 years	33.6% (9.1–51.3%)	Non-inferiority criteria not met

¹Seven days after dose 2 to before dose 3

²CDC definition: At least 1 prespecified clinical symptom and a positive RT-PCR

³Efficacy estimates presented represent the manufacturer analysis. For GRADE, estimates based on relative risks will be presented

⁴Antibody responses after two 3µg doses in children ages 6 months–4 years compared to two 30µg doses in individuals ages 16–25 years

Pfizer-BioNTech COVID-19 vaccine: Children ages 6 months–4 years

- No deaths were reported in any trial participants
- Serious adverse events (SAE) rare overall
 - SAEs occurred in 1.0% of vaccine recipients and 1.5% of placebo recipients
 - One vaccine recipient had 2 SAEs (fever and pain in extremity requiring hospitalization) possibly related to the vaccine^{*}
- No cases of myocarditis in any trial participants
- No cases of vaccine-associated anaphylaxis in any trial participants

Pfizer-BioNTech COVID-19 vaccine: Children ages 6 months-4 years

- Local reactions occurring within 7 days were common
 - Pain or tenderness at the injection site most common
- Systemic reactions within 7 days were common
 - Fatigue most common in children ages 2–4 years
 - Irritability and drowsiness more common in children ages 6–23 months
- Reactions were comparable after dose 1, 2, and 3
- Most symptoms were mild and resolved after 1–2 days

Pfizer-BioNTech COVID-19 vaccine: Children ages 6 months–4 years

- Fevers were reported with similar frequency after both vaccine and placebo, and similar frequencies after doses 1, 2, and 3
- Most fevers were reported on day 1 and 2 after either dose and lasted for a median of 1 day

	Fever post	t-dose 2	Fever post-dose 3		
	Vaccine Placebo		Vaccine	Placebo	
	N=2926	N=1469	N=917	N=432	
Any fever	173 (5.9%)	82 (5.7%)	53 (5.8%)	21 (4.9%)	
Grade 4 fever (104º ^F or higher)	3 (0.1%)	0	1 (0.1%)	0	

Conclusions

Pfizer-BioNTech COVID-19 vaccine: Children ages 6 months-4 years

- Antibody levels after 3 doses in children ages 6 months–4 years produces similar antibody levels after 2 doses in individuals ages 16–24 years
- Reactogenicity post-vaccine similar after each of the 3 vaccine doses, and similar to reactions seen in placebo recipients
- Efficacy estimates difficult to interpret given small numbers and limited follow-up time
 - Impact of longer interval in the trial between dose 2 and dose 3 on efficacy, reactogenicity or safety are unknown

• • • •

Work Group Interpretation

. . .

Work Group interpretation:

mRNA COVID-19 vaccines in young children

- mRNA COVID-19 vaccine clinical trials in young children both conducted during Omicron predominance, but different months and incidence levels
 - In addition to differences in number of participants in the efficacy analyses and differences in follow up time, the incidence levels impacted COVID-19 case accrual and certainty in efficacy estimates
- Efficacy estimates for these two mRNA vaccines cannot be directly compared
- Both vaccines met non-inferiority criteria for neutralizing antibody levels

Work Group interpretation:

mRNA COVID-19 vaccines in young children

- Current data are for a 2-dose or 3-dose primary series
- To achieve criteria set by FDA for authorization, 2 doses for Moderna or 3 doses of Pfizer-BioNTech COVID-19 vaccine were required
 - For ages 5 years and over, 2 doses achieved the required antibody levels for immunobridging. A booster was then provided to optimize immune response and address waning of antibody titers detected after completion of primary series
- Post-authorization effectiveness studies can help determine subsequent timing and need of **boosters** after 2-dose (Moderna) or 3-dose (Pfizer-BioNTech) primary series

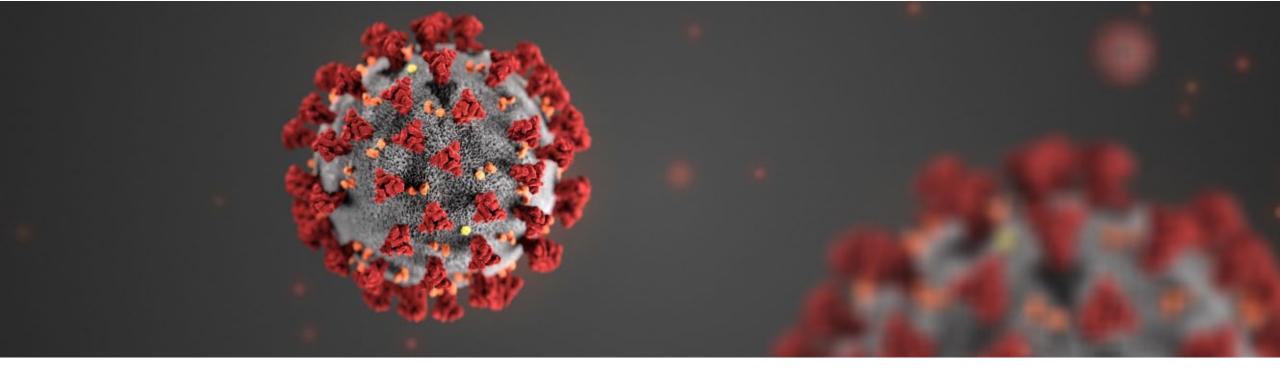
Work Group interpretation:

mRNA COVID-19 vaccines in young children

- In other age groups during Omicron, mRNA COVID-19 vaccine postauthorization vaccine effectiveness was lower against infection, but higher protection against severe disease
- Clinical trials were not powered to detect efficacy against severe disease in young children, but similar patterns in this age group are expected to what is seen in everyone ages 5 years and older

Next Steps: mRNA COVID-19 vaccines in young children

Evidence to Recommendation (EtR) Framework, including GRADE summary will be presented tomorrow


Policy questions for EtR

- Should vaccination with Moderna COVID-19 vaccine (2-doses, 25µg, IM) be recommended for children 6 months – 5 years of age, under an Emergency Use Authorization?
- Should vaccination with Pfizer-BioNTech COVID-19 vaccine (3-doses, 3µg, IM) be recommended for children 6 months – 4 years of age, under an Emergency Use Authorization?

Acknowledgements

- Megan Wallace
- Danielle Moulia
- Lauren Roper
- Tara Anderson
- Amy Blain
- Monica Godfrey
- Mary Chamberland
- Katherine Fleming-Dutra
- Susan Goldstein
- Edwin Shanley
- Roodley Archer

- Evelyn Twentyman
- Sarah Meyer
- Tamara Pilishvili
- Ruth Link-Gelles
- Elisha Hall
- Valerie Morelli
- JoEllen Wolicki
- Joy Hsu
- Jefferson Jones

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

Thank you!

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

