Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs

Subjects

Abstract

Exoplanet surveys around M dwarfs have detected a growing number of exoplanets with Earth-like insolation. It is expected that some of those planets are rocky planets with the potential for temperate climates favourable to surface liquid water. However, various models predict that terrestrial planets orbiting in the classical habitable zone around M dwarfs have no water or too much water, suggesting that habitable planets around M dwarfs might be rare. Here we present the results of an updated planetary population synthesis model, which includes the effects of water enrichment in the primordial atmosphere, caused by the oxidation of atmospheric hydrogen by rocky materials from incoming planetesimals and from the magma ocean. We find that this water production in the primordial atmosphere is found to significantly impact the occurrence of terrestrial rocky aqua planets, yielding ones with diverse water content. We estimate that 5–10% of the planets with a size of <1.3R orbiting early-to-mid M dwarfs have appropriate amounts of seawater for habitability. Such an occurrence rate would be high enough to detect potentially habitable planets by ongoing and near-future M-dwarf planet survey missions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of water enrichment in the primordial atmospheres on atmospheric accumulation and planetary growth.
Fig. 2: Probability density distribution of the water mass fraction in the synthesized planets with a mass of 0.3–3.0M (‘nearly Earth-mass planets’) orbiting between 0.1 and 0.2 au (HZ) around M dwarfs of 0.3M at the age of 1 Gyr.
Fig. 3: Same data as Fig. 2a,b, but for different stellar masses.
Fig. 4: Planetary radius Rp versus the water content of HZ-NEMPs around 0.3M M dwarfs in the case of enriched atmospheres with the primordial atmospheric water mass fraction of \({X}_{{{{\rm{{H}}}_{2}{\rm O}}}}=0.8\).

Similar content being viewed by others

Data availability

All data from the simulation are available via GitHub at https://github.com/TadahiroKimura/Kimura-Ikoma2022. Source data are provided with this paper.

Code availability

The numerical code used in the current study is available from the corresponding authors on reasonable request.

References

  1. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of the Earth’s surface temperature. J. Geophys. Res 86, 9776–9782 (1981).

    Article  ADS  Google Scholar 

  2. Abbot, D. S., Cowan, N. B. & Ciesla, F. J. Indication of insensitivity of planetary weathering behavior and habitable zone to surface land fraction. Astrophys. J 756, 178 (2012).

    Article  ADS  Google Scholar 

  3. Alibert, Y. On the radius of habitable planets. Astron. Astrophys 561, A41 (2014).

    Article  ADS  Google Scholar 

  4. Nakayama, A., Kodama, T., Ikoma, M. & Abe, Y. Runaway climate cooling of ocean planets in the habitable zone: a consequence of seafloor weathering enhanced by melting of high-pressure ice. Mon. Notices Royal Astron. Soc 488, 1580–1596 (2019).

    Article  ADS  Google Scholar 

  5. Genda, H. Origin of Earth’s oceans: an assessment of the total amount, history and supply of water. Geochem. J 50, 27–42 (2016).

    Article  Google Scholar 

  6. Tian, F. & Ida, S. Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8, 177–180 (2015).

    Article  ADS  Google Scholar 

  7. Miguel, Y., Cridland, A., Ormel, C. W., Fortney J. J. & Ida, S. Diverse outcomes of planet formation and composition around low-mass stars and brown dwarfs. Mon. Notices Royal Astron. Soc. 491, 1998–2009 (2019).

  8. Ikoma, M. & Genda, H. Constraints on the mass of a habitable planet with water of nebular origin. Astrophys 648, 696 (2006).

    Article  ADS  Google Scholar 

  9. Kimura, T. & Ikoma, M. Formation of aqua planets with water of nebular origin: effects of water enrichment on the structure and mass of captured atmospheres of terrestrial planets. Mon. Notices Royal Astron. Soc 496, 3755–3766 (2020).

    Article  ADS  Google Scholar 

  10. Ida, S., Lin, D. N. C. & Nagasawa, M. Toward a deterministic model of planetary formation. VII. Eccentricity distribution of gas giants. Astrophys. J. 775, 42 (2013).

    Article  ADS  Google Scholar 

  11. Ida, S., Tanaka, H., Johansen, A., Kanagawa, K. D. & Tanigawa, T. Slowing down type II migration of gas giants to match observational data. Astrophys. J 864, 77 (2018).

    Article  ADS  Google Scholar 

  12. Kopparapu, R. K. Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys. J 787, L29 (2014).

    Article  ADS  Google Scholar 

  13. Lodders, K., Palme, H. & Gail, H. P. Abundances of the elements in the solar system. Landolt Börnstein 4B, 712 (2009).

    Google Scholar 

  14. Booth, R. A., Clarke, C. J., Madhusudhan, N. & Ilee, J. D. Chemical enrichment of giant planets and discs due to pebble drift. Mon. Notices Royal Astron. Soc 469, 3994 (2017).

    Article  ADS  Google Scholar 

  15. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J 591, 1220 (2003).

    Article  ADS  Google Scholar 

  16. Brügger, N., Burn, R., Coleman, G. A. L., Alibert, Y. & Benz, W. Pebbles versus planetesimals. The outcomes of population synthesis models. Astron. Astrophys. 640, A21 (2020).

    Article  ADS  Google Scholar 

  17. Gardner, J. P. The James Webb space telescope. Space Sci. Rev. 123, 485–606 (2006).

    Article  ADS  Google Scholar 

  18. Tinetti, G. A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135–209 (2018).

    Article  ADS  Google Scholar 

  19. Abe, Y., Abe-Ouchi, A., Sleep, N. H. & Zahnle, K. J. Habitable zone limits for dry planets. Astrobiology 11, 443–460 (2011).

    Article  ADS  Google Scholar 

  20. Kaltenegger, L., Sasselov, D. & Rugheimer, S. Water-planets in the habitable zone: atmospheric chemistry, observable features, and the case of Kepler-62e and -62f. Astrophys. J 775, L47 (2013).

    Article  ADS  Google Scholar 

  21. Moore, K. & Cowan, N. B. Keeping M-earths habitable in the face of atmospheric loss by sequestering water in the mantle. Mon. Notices Royal Astron. Soc 496, 3786–3795 (2020).

    Article  ADS  Google Scholar 

  22. Kodama, T., Genda, H., O’ishi, R., Abe-Ouchi, A. & Abe, Y. Inner edge of habitable zones for Earth-sized planets with various surface water distributions. J. Geophys. Res. Planets 124, 2306–2324 (2019).

    Article  ADS  Google Scholar 

  23. Cowan, N. B. & Abbot, D. S. Water cycling between ocean and mantle: super-earths need not be waterworlds. Astrophys. J. 781, 27 (2014).

    Article  ADS  Google Scholar 

  24. Joshi, M. M., Haberle, R. M. & Reynolds, R. T. Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129, 450–465 (1997).

    Article  ADS  Google Scholar 

  25. Wordsworth, R. D. Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone. Astrophys. J. Lett. 733, L48 (2011).

    Article  ADS  Google Scholar 

  26. Kunimoto, M., Winn, J., Ricker, G. R. & Vanderspek, R. K. Predicting the exoplanet yield of the TESS Prime and extended missions through years 1–7. Astrophys. J. 163, 290 (2022).

    Google Scholar 

  27. Rauer, H. The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014).

    Article  ADS  Google Scholar 

  28. Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. Astron. Astrophys. 337, 403 (1998).

    ADS  Google Scholar 

  29. Emsenhuber, A. The New Generation Planetary Population Synthesis (NGPPS). I. Bern global model of planet formation and evolution, model tests, and emerging planetary systems. Astron. Astrophys. 656, A69 (2021).

    Article  Google Scholar 

  30. Veras, D. & Armitage, P. J. Outward migration of extrasolar planets to large orbital radii. Mon. Notices Royal Astron. Soc. 347, 624 (2004).

    Google Scholar 

  31. Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C. & Dullemond, C. P. Protoplanetary disk structures in Ophiuchus. II. Extension to fainter sources. Astrophys. J. 723, 1241 (2010).

    Article  ADS  Google Scholar 

  32. Lynden-Bell, D. & Pringle, J. E. The evolution of viscous discs and the origin of the nebular variables. Mon. Notices Royal Astron. Soc. 168, 603–637 (1974).

    Article  ADS  Google Scholar 

  33. Hartmann, L., Calvet, N., Gullbring, E. & D’Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385 (1998).

    Article  ADS  Google Scholar 

  34. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    Google Scholar 

  35. Matsuyama, I., Johnstone, D. & Hartmann, L. Viscous diffusion and photoevaporation of stellar disks. Astrophys. J. 582, 893 (2003).

    Article  ADS  Google Scholar 

  36. Liffman, K. The gravitational radius of an irradiated disk. Publ. Astron. Soc. Aust. 20, 337–339 (2003).

    Article  ADS  Google Scholar 

  37. Begelman, M. C., McKee, C. F. & Shields, G. A. Compton heated winds and coronae above accretion disks. I. Dynamics. Astrophys. J. 271, 70–88 (1983).

    Article  ADS  Google Scholar 

  38. Adams, F. C., Hollenbach, D., Laughlin, G. & Gorti, U. Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates. Astrophys. J. 611, 360 (2004).

    Article  ADS  Google Scholar 

  39. Font, A. S., McCarthy, I. G., Johnstone, D. & Ballantyne, D. R. Photoevaporation of circumstellar disks around young stars. Astrophys. J. 607, 890 (2004).

    Article  ADS  Google Scholar 

  40. Hollenbach, D., Johnstone, D., Lizano, S. & Shu, F. Photoevaporation of disks around massive stars and application to ultracompact H ii regions. Astrophys. J. 428, 654–669 (1994).

    Article  ADS  Google Scholar 

  41. Clarke, C. J., Gendrin, A. & Sotomayor, M. The dispersal of circumstellar discs: the role of the ultraviolet switch. Mon. Notices Royal Astron. Soc 328, 485–491 (2001).

    Article  ADS  Google Scholar 

  42. Nakamoto, T. & Nakagawa, Y. Formation, early evolution, and gravitational stability of protoplanetary disks. Astrophys. J. 421, 640–650 (1994).

    Article  ADS  Google Scholar 

  43. Hueso, R. & Guillot, T. Evolution of protoplanetary disks: constraints from DM Tauri and GM Aurigae. Astrophys. J. 442, 703–725 (2005).

    Google Scholar 

  44. Bell, K. R. & Lin, D. N. C. Using FU Orionis outbursts to constrain self-regulated protostellar disk models. Astrophys. J. 427, 987 (1994).

    Article  ADS  Google Scholar 

  45. Suzuki, T. K., Ogihara, M., Morbidelli, A. R., Crida, A. & Guillot, T. Evolution of protoplanetary discs with magnetically driven disc winds. Astron. Astrophys. 596, A74 (2016).

    Article  ADS  Google Scholar 

  46. Kusaka, T., Nakano, T. & Hayashi, C. Growth of solid particles in the primordial solar nebula. Prog. Theor. Phys. 44, 1580–1595 (1970).

    Article  ADS  Google Scholar 

  47. Adams, F. C., Lada, C. J. & Shu, F. H. The disks of T Tauri stars with flat infrared spectra. Astrophys. J. 326, 865–883 (1988).

    Article  ADS  Google Scholar 

  48. Ruden, S. P. & Pollack, J. B. The dynamical evolution of the protosolar nebula. Astrophys. J. 375, 740–760 (1991).

    Article  ADS  Google Scholar 

  49. Chiang, E. I. & Goldreich, P. Spectral energy distributions of T Tauri stars with passive circumstellar disks. Astrophys. J. 490, 368 (1997).

    Article  ADS  Google Scholar 

  50. Birnstiel, T., Klahr, H. & Ercolano, B. A simple model for the evolution of the dust population in protoplanetary disks. Astron. Astrophys. 539, A148 (2012).

    Article  ADS  MATH  Google Scholar 

  51. Birnstiel, T. & Andrews, S. M. On the outer edges of protoplanetary dust disks. Astrophys. J. 780, 153 (2014).

    Article  ADS  Google Scholar 

  52. Ansdell, M. ALMA survey of Lupus protoplanetary disks. II. Gas disk radii. Astrophys. J. 859, 21 (2018).

    Article  ADS  Google Scholar 

  53. Kokubo, E. & Ida, S. Formation of protoplanet systems and diversity of planetary systems. Astrophys. J. 581, 666 (2002).

    Article  ADS  Google Scholar 

  54. Inaba, S., Tanaka, H., Nakazawa, K., Wetherill, G. W. & Kokubo, E. High-accuracy statistical simulation of planetary accretion: II. Comparison with N-body simulation. Icarus 149, 235–250 (2001).

    Article  ADS  Google Scholar 

  55. Greenzweig, Y. & Lissauer, J. J. Accretion rates of protoplanets. Icarus 87, 40–77 (1990).

    Article  ADS  Google Scholar 

  56. Greenzweig, Y. & Lissauer, J. J. Accretion rates of protoplanets II. Gaussian distributions of planetesimal velocities. Icarus 100, 440–463 (1992).

    Article  ADS  Google Scholar 

  57. Inaba, S. & Ikoma, M. Enhanced collisional growth of a protoplanet that has an atmosphere. Astron. Astrophys. 410, 711–723 (2003).

    Article  ADS  Google Scholar 

  58. Ida, S. & Lin, D. N. C. Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. Astrophys. J. 604, 388 (2004).

    Article  ADS  Google Scholar 

  59. Ikoma, M., Nakazawa, K. & Emori, H. Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys. J. 537, 1013 (2000).

    Article  ADS  Google Scholar 

  60. Ikoma, M. & Hori, Y. In situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. Astrophys. J. 753, 66 (2012).

    Article  ADS  Google Scholar 

  61. Guillot, T., Chabrier, G., Gautier, D. & Morel, P. Effect of radiative transport on the evolution of Jupiter and Saturn. Astrophys. J. 450, 463 (1995).

    Article  ADS  Google Scholar 

  62. Papaloizou, J. C. B. & Nelson, R. P. Models of accreting gas giant protoplanets in protostellar disks. Astron. Astrophys. 433, 247–265 (2005).

    Article  ADS  Google Scholar 

  63. Mordasini, C., Alibert, Y., Klahr, H. & Henning, T. Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution. Astron. Astrophys. 547, A111 (2012).

    Article  ADS  Google Scholar 

  64. Fortier, A., Alibert, Y., Carron, F., Benz, W. & Dittkrist, K. M. Planet formation models: the interplay with the planetesimal disc. Astron. Astrophys. 549, A44 (2013).

    Article  ADS  Google Scholar 

  65. Piso, A.-M. A. & Youdin, A. N. On the minimum core mass for giant planet formation at wide separations. Astrophys. J. 786, 21 (2014).

    Article  ADS  Google Scholar 

  66. Venturini, J., Alibert, Y. & Benz, W. Planet formation with envelope enrichment: new insights on planetary diversity. Astron. Astrophys. 596, A90 (2016).

    Article  ADS  Google Scholar 

  67. Lee, E. J., Chiang, E. & Ormel, C. W. Make super-Earths, not Jupiters: accreting nebular gas onto solid cores at 0.1 au and beyond. Astrophys. J. 797, 95 (2014).

    Article  ADS  Google Scholar 

  68. Hubickyj, O., Bodenheimer, P. & Lissauer, J. J. Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179, 415–431 (2005).

    Article  ADS  Google Scholar 

  69. Tanigawa, T. & Ikoma, M. A systematic study of the final masses of gas giant planets. Astrophys. J. 667, 557 (2007).

    Article  ADS  Google Scholar 

  70. Tajima, N. & Nakagawa, Y. Evolution and dynamical stability of the proto-giant-planet envelope. Icarus 126, 282–292 (1997).

    Article  ADS  Google Scholar 

  71. Tanigawa, T. & Tanaka, H. Final masses of giant planets. II. Jupiter formation in a gas-depleted disk. Astrophys. J. 823, 48 (2016).

    Article  ADS  Google Scholar 

  72. Tanaka, H., Murase, K. & Tanigawa, T. Final masses of giant planets. III. Effect of photoevaporation and a new planetary migration model. Astrophys. J. 891, 143 (2020).

    Article  ADS  Google Scholar 

  73. Kanagawa, K. D., Tanaka, H., Muto, T., Tanigawa, T. & Takeuchi, T. Formation of a disc gap induced by a planet: effect of the deviation from Keplerian disc rotation. Mon. Notices Royal Astron. Soc 448, 994–1006 (2015).

    Article  ADS  Google Scholar 

  74. Simon, J. B., Bai, X.-N., Stone, J. M., Armitage, P. J. & Beckwith, K. Turbulence in the outer regions of protoplanetary disks. I. Weak accretion with no vertical magnetic flux. Astrophys. J. 764, 66 (2013).

    Article  ADS  Google Scholar 

  75. Armitage, P. J., Simon, J. B. & Martin, R. G. Two timescale dispersal of magnetized protoplanetary disks. Astrophys. J. 778, L14 (2013).

    Article  ADS  Google Scholar 

  76. Hasegawa, Y., Okuzumi, S., Flock, M. & Turner, N. J. Magnetically induced disk winds and transport in the HL Tau disk. Astrophys. J. 845, 31 (2017).

    Article  ADS  Google Scholar 

  77. Zeng, L. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    Article  ADS  Google Scholar 

  78. Fortney, J. J., Marley, M. S. & Barnes, J. W. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661 (2007).

    Article  ADS  Google Scholar 

  79. Kurosaki, K. & Ikoma, M. Acceleration of cooling of ice giants by condensation in early atmospheres. Astrophys. J. 153, 260 (2017).

    Google Scholar 

  80. Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713–741 (1995).

    Article  ADS  Google Scholar 

  81. Lyon, S. P. & Johnson, J. D. Sesame: The Los Alamos National Laboratory Equation of State Database. Report No. LA-UR-92-3407 (Los Alamos National Laboratory, 1992).

  82. Matsui, T. & Abe, Y. Impact-induced atmospheres and oceans on Earth and Venus. Nature 322, 526–528 (1986).

    Article  Google Scholar 

  83. Lopez, E. D. & Fortney, J. J. Understanding the mass–radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J 792, 1 (2014).

    Article  ADS  Google Scholar 

  84. Kubyshkina, D. Grid of upper atmosphere models for 1–40M planets: application to CoRoT-7 b and HD 219134 b,c. Astron. Astrophys. 619, A151 (2018).

    Article  Google Scholar 

  85. Kubyshkina, D. Overcoming the limitations of the energy-limited approximation for planet atmospheric escape. Astrophys. J. 866, L18 (2018).

    Article  ADS  Google Scholar 

  86. Johnstone, C. P., Bartel, M. & Güdel, M. The active lives of stars: a complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. Astron. Astrophys. 649, A96 (2021).

    Article  ADS  Google Scholar 

  87. Jiménez, M. A. & Masset, F. S. Improved torque formula for low- and intermediate-mass planetary migration. Mon. Notices Royal Astron. Soc. 471, 4917–4929 (2017).

    Article  ADS  Google Scholar 

  88. Casoli, J. & Masset, F. S. On the horseshoe drag of a low-mass planet. I. Migration in isothermal disks. Astrophys. J. 703, 845 (2009).

    Article  ADS  Google Scholar 

  89. Masset, F. S. & Casoli, J. On the horseshoe drag of a low-mass planet. II. Migration in adiabatic disks. Astrophys. J. 703, 857 (2009).

    Article  ADS  Google Scholar 

  90. Masset, F. S. & Casoli, J. Saturated torque formula for planetary migration in viscous disks with thermal diffusion: recipe for protoplanet population synthesis. Astrophys. J. 723, 1393 (2010).

    Article  ADS  Google Scholar 

  91. Masset, F. S. Coorbital thermal torques on low-mass protoplanets. Mon. Notices Royal Astron. Soc. 472, 4204–4219 (2017).

    Article  ADS  Google Scholar 

  92. Kanagawa, K. D., Tanaka, H. & Szuszkiewicz, E. Radial migration of gap-opening planets in protoplanetary disks. I. The case of a single planet. Astrophys. J. 861, 140 (2018).

    Article  ADS  Google Scholar 

  93. Murray, C. D. and Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, 1999).

  94. Ida, S. & Lin, D. N. C. Toward a deterministic model of planetary formation. VI. Dynamical interaction and coagulation of multiple rocky embryos and super-Earth systems around solar-type stars. Astrophys. J. 719, 810 (2010).

    Article  ADS  Google Scholar 

  95. Goldreich, P. & Tremaine, S. The dynamics of planetary rings. Annu. Rev. Astron. Astrophys. 20, 249–283 (1982).

    Article  ADS  Google Scholar 

  96. Hasegawa, M. & Nakazawa, K. Distant encounter between Keplerian particles. Astron. Astrophys. 227, 619–627 (1990).

    ADS  MATH  Google Scholar 

  97. Ogihara, M., Duncan, M. J. & Ida, S. Eccentricity trap: trapping of resonantly interacting planets near the disk inner edge. Astrophys. J. 721, 1184 (2010).

    Article  ADS  Google Scholar 

  98. Tanaka, H. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. Astrophys. J. 602, 388 (2004).

    Article  ADS  Google Scholar 

  99. Shiraishi, M. & Ida, S. Infall of planetesimals onto growing giant planets: onset of runaway gas accretion and metallicity of their gas envelopes. Astrophys. J. 684, 1416 (2008).

    Article  ADS  Google Scholar 

  100. Artymowicz, P. Disk-satellite interaction via density waves and the eccentricity evolution of bodies embedded in disks. Astrophys. J. 419, 166 (1993).

    Article  ADS  Google Scholar 

  101. Iwasaki, K., Emori, H., Nakazawa, K. & Tanaka, H. Orbital stability of a protoplanet system under a drag force proportional to the random velocity. Publ. Astron. Soc. Jpn. 54, 471–479 (2002).

    Article  ADS  Google Scholar 

  102. Zhou, J.-L., Lin, D. N. C. & Sun, Y.-S. Post-oligarchic evolution of protoplanetary embryos and the stability of planetary systems. Astrophys. J. 666, 423 (2007).

    Article  ADS  Google Scholar 

  103. Emsenhuber, A. The New Generation Planetary Population Synthesis (NGPPS). II. Planetary population of solar-like stars and overview of statistical results. Astron. Astrophys. 656, A70 (2021).

    Article  Google Scholar 

  104. Tychoniec, Ł. The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). IV. Free–free emission from protostars: links to infrared properties, outflow tracers, and protostellar disk masses. Astrophys. J. 238, 19 (2018).

    Article  Google Scholar 

  105. Andrews, S. M., Rosenfeld, K. A., Kraus, A. L. & Wilner, D. J. The mass dependence between protoplanetary disks and their stellar hosts. Astrophys. J. 771, 129 (2013).

    Article  ADS  Google Scholar 

  106. Santos, N. C. Spectroscopic metallicities for planet-host stars: extending the samples. Astron. Astrophys. 437, 1127–1133 (2005).

    Article  ADS  Google Scholar 

  107. Venuti, L. CSI 2264: investigating rotation and its connection with disk accretion in the young open cluster NGC 2264. Astron. Astrophys. 599, A23 (2017).

    Article  Google Scholar 

  108. Burn, R. The New Generation Planetary Population Synthesis (NGPPS). IV. Planetary systems around low-mass stars. Astron. Astrophys. 656, A72 (2021).

    Article  Google Scholar 

  109. Mamajek, E. E. Initial conditions of planet formation: lifetimes of primordial disks. AIP Conf. Proc. 1158, 3 (2009).

Download references

Acknowledgements

This work is supported by JSPS KAKENHI (nos. JP18H05439, JP21H01141 and JP22J11725). T.K. is a JSPS Research Fellow, and also supported by the International Graduate Program for Excellence in Earth-Space Science (IGPEES).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work. M.I. conceived the original idea and supervised this project. T.K. developed the entire model of planetary population synthesis partly using a few modules that M.I. had developed. T.K. carried out the numerical simulations and analysed the simulation results. Both authors discussed the results and implications and wrote the paper.

Corresponding authors

Correspondence to Tadahiro Kimura or Masahiro Ikoma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Nicolas Cowan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1 and 2 and Figs. 1–4.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Ikoma, M. Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs. Nat Astron 6, 1296–1307 (2022). https://doi.org/10.1038/s41550-022-01781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01781-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing